Artificial Neural Networks: A New Landscape Characterization Toolbox
人工神经网络:新的景观表征工具箱
基本信息
- 批准号:0534036
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project uses self-organizing maps, a form of artificial neural network techniques, to determine the role of glacial processes in uplift of the Transantarctic Mountains (TAM). The link between erosion and mountain building is known, but difficult to resolve because the processes are dynamically coupled. The TAM offer a unique opportunity to explore this relationship because they have been tectonically quiescent since the late Oligocene, but have undergone various forms of glaciation. Previous investigations of their landscape evolution have been based primarily on field inspection of landforms and surface features, a time intensive and logistically difficult undertaking. While these studies have documented the varying climatic influences on the TAM and the importance of fluvial, glacial, and desert processes in shaping the landscape, we are still left without an accounting of the impact of glacial erosion along the TAM as a whole. This project uses digital elevation models and self-organizing map analysis to provide quantitative metrics that characterize glacial landforms and determine the overall role of glaciation in mountain-building.The broader impacts of this work are improving society's understanding of global climate change by demonstrating links between climate and landform.
该项目使用自组织地图--一种人工神经网络技术--来确定冰川过程在横贯北极山脉隆起中的作用()。侵蚀和造山之间的联系是已知的,但很难解决,因为这两个过程是动态耦合的。提供了一个探索这种关系的独特机会,因为它们自渐新世晚期以来一直处于构造静止期,但经历了各种形式的冰川作用。以前对其地貌演变的调查主要是基于对地貌和地表特征的实地考察,这是一项耗时和后勤困难的工作。虽然这些研究记录了气候对的不同影响,以及河流、冰川和沙漠过程在塑造地貌中的重要性,但我们仍然没有考虑到冰川侵蚀作为一个整体的影响。该项目使用数字高程模型和自组织地图分析来提供描述冰川地貌特征的量化指标,并确定冰川在造山中的总体作用。这项工作的更广泛影响是,通过展示气候和地貌之间的联系,提高社会对全球气候变化的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Audrey Huerta其他文献
Audrey Huerta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Audrey Huerta', 18)}}的其他基金
NEW IPA Assignment with Central Washington University.
中央华盛顿大学的新 IPA 作业。
- 批准号:
2038405 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Intergovernmental Personnel Award
Sustainability for Livelihood, Values, and the Environment
生计、价值观和环境的可持续性
- 批准号:
1356479 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: POLENET-Antarctica: Investigating Links Between Geodynamics and Ice Sheets - Phase 2
合作研究:POLENET-南极洲:调查地球动力学和冰盖之间的联系 - 第二阶段
- 批准号:
1246666 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Thermochronologic and modelling test for a Mesozoic West Antarctic Plateau
合作研究:中生代西南极高原的热年代学和模型测试
- 批准号:
0739713 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Neural Process模型的多样化高保真技术研究
- 批准号:62306326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SkyANN: Skyrmionic Artificial Neural Networks
SkyANN:Skyrmionic 人工神经网络
- 批准号:
10108371 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Emergent embodied cognition in shallow, biological and artificial, neural networks
浅层生物和人工神经网络中的突现认知
- 批准号:
BB/X01343X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
This project will leverage artificial neural networks to automatically build various components of particle filters.
该项目将利用人工神经网络自动构建粒子滤波器的各种组件。
- 批准号:
2841890 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Flexible Artificial Synaptic Devices and Their Neural Networks Based on Perovskite-Spinel Nanocomposite Thin Films
基于钙钛矿-尖晶石纳米复合薄膜的柔性人工突触装置及其神经网络
- 批准号:
23KJ0418 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234031 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Exploring the multiple loci of learning and computation in simple artificial neural networks
探索简单人工神经网络中学习和计算的多个位点
- 批准号:
EP/X017915/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Uniform inference on continuous treatment effects via artificial neural networks in digital health
通过数字健康中的人工神经网络对连续治疗效果进行统一推断
- 批准号:
2310288 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of artificial neural networks to analyze micrographs of zirconium-based alloys and hydrides for nuclear power applications
开发人工神经网络来分析核电应用中锆基合金和氢化物的显微照片
- 批准号:
549836-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
Statistical Physics Investigation of Artificial Neural Networks
人工神经网络的统计物理研究
- 批准号:
574283-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards