Uniform inference on continuous treatment effects via artificial neural networks in digital health
通过数字健康中的人工神经网络对连续治疗效果进行统一推断
基本信息
- 批准号:2310288
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research project will provide a general formulation and a deep learning-powered toolbox for conducting causal analysis of continuous treatment effects in observational research. Digital health innovations have paved the way for the collection of large-scale observational data. In practice, many empirical applications in healthcare programs involve continuous treatments. This project meets the immediate needs of practitioners seeking flexible and powerful statistical tools for conducting causal inference of continuous treatment effects based on large and heterogeneous digital health data. Students, especially from underrepresented groups, will be recruited to participate in the research. Easy-to-implement software packages will be developed and made publicly available. The research results will equip scientists and healthcare providers with principled analysis for making treatment recommendations, so as to improve patient care and reduce costs. Advanced digital technologies powered with a reliable deep learning toolbox will revolutionize healthcare analytics. The research will also promote collaborations with scientists from Medicine, Public Health, Engineering, and Social Sciences. In addition, the project will provide research training for graduate students.This project will develop new statistical methodologies and the associated theories for conducting uniform causal inference of continuous treatment effects via deep learning. It will pursue three specific research topics, and the developed methods will be used to solve a wide range of causal problems. Specifically, in the first topic, the project will develop a variety of neural network architectures to approximate the nuisance function for suitable data applications in digital health. In the second topic, the project will estimate the balancing weight using neural networks through generalized optimization, and construct simultaneous confidence bands for the dose-response curve for inference. In the third topic, the project will apply the proposed optimization procedure to the estimation of heterogeneous treatment effects, and to the longitudinal data setting. The research will provide a new perspective on estimating general continuous treatment effects using deep neural networks. It will provide a powerful tool for causal analysis that combines the advantages of deep learning, direct covariate balancing, and generalized optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将提供一个通用公式和一个深度学习工具箱,用于在观察性研究中对连续治疗效果进行因果分析。 数字健康创新为收集大规模观测数据铺平了道路。在实践中,医疗保健计划中的许多经验应用涉及连续治疗。该项目满足了从业者的迫切需求,他们寻求灵活而强大的统计工具,以基于大型和异构的数字健康数据对连续治疗效果进行因果推断。学生,特别是来自代表性不足的群体,将被招募参加研究。将开发易于实施的软件包并向公众提供。研究结果将为科学家和医疗服务提供者提供原则性分析,以提出治疗建议,从而改善患者护理并降低成本。由可靠的深度学习工具箱提供支持的先进数字技术将彻底改变医疗保健分析。该研究还将促进与医学,公共卫生,工程和社会科学科学家的合作。此外,该项目还将为研究生提供研究培训。该项目将开发新的统计方法和相关理论,通过深度学习对连续治疗效果进行统一的因果推断。 它将追求三个具体的研究课题,并开发的方法将用于解决广泛的因果关系问题。具体而言,在第一个主题中,该项目将开发各种神经网络架构,以近似数字健康中合适数据应用的滋扰函数。在第二个主题中,该项目将通过广义优化使用神经网络估计平衡重量,并为剂量-反应曲线构建同步置信带进行推断。在第三个主题中,该项目将应用所提出的优化程序来估计异质性治疗效果,并纵向数据设置。该研究将为使用深度神经网络估计一般连续治疗效果提供新的视角。 该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shujie Ma其他文献
Design of Industrial Field Intelligent Temperature Acquisition System Based on Timestamped Anti-Interference Algorithm
基于时间戳抗干扰算法的工业现场智能温度采集系统设计
- DOI:
10.1109/ssci44817.2019.9002928 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Chunjie Yang;Bingchun Jiao;Hongbo Kang;Yanwei Li;Yan Liu;Yifan Wu;Shujie Ma - 通讯作者:
Shujie Ma
Two-step spline estimating equations for generalized additive partially linear models with large cluster sizes
- DOI:
10.1214/12-aos1056 - 发表时间:
2012-12 - 期刊:
- 影响因子:4.5
- 作者:
Shujie Ma - 通讯作者:
Shujie Ma
Statistical Learning using Sparse Deep Neural Networks in Empirical Risk Minimization
在经验风险最小化中使用稀疏深度神经网络的统计学习
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Shujie Ma;Mingming Liu - 通讯作者:
Mingming Liu
Supplemental Materials for “ Varying Index Coefficient Models
“变指数系数模型”的补充材料
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Shujie Ma;P. Song - 通讯作者:
P. Song
Generalization and risk bounds for recurrent neural networks
循环神经网络的泛化和风险界
- DOI:
10.1016/j.neucom.2024.128825 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:6.500
- 作者:
Xuewei Cheng;Ke Huang;Shujie Ma - 通讯作者:
Shujie Ma
Shujie Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shujie Ma', 18)}}的其他基金
Efficient Estimation of Treatment Effects via Nonparametric Machine Learning
通过非参数机器学习有效估计治疗效果
- 批准号:
2014221 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
New Nonparametric Modeling Methods for High-Dimensional Time Series
高维时间序列的新非参数建模方法
- 批准号:
1712558 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Estimation, model selection and inference in two classes of non- and semi-parametric models for repeated measurements
用于重复测量的两类非参数和半参数模型的估计、模型选择和推理
- 批准号:
1306972 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似海外基金
Nonparametric Inference for Convex Functions and Continuous Treatment Effects
凸函数和连续治疗效果的非参数推理
- 批准号:
2210312 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Advances in Causal Inference With Continuous Exposures
连续暴露因果推理的进展
- 批准号:
2113171 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Statistical inference for continuous variables and critical illness monitoring
连续变量和危重疾病监测的统计推断
- 批准号:
2576568 - 财政年份:2021
- 资助金额:
$ 15万 - 项目类别:
Studentship
Project A: Theoretical framework for studying causal inference in trial-based and continuous tasks
项目 A:研究基于试验和连续任务中因果推理的理论框架
- 批准号:
10225403 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Project A: Theoretical framework for studying causal inference in trial-based and continuous tasks
项目 A:研究基于试验和连续任务中因果推理的理论框架
- 批准号:
10400146 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Project C: Neural basis of causal inference in continuous navigation
项目 C:连续导航中因果推理的神经基础
- 批准号:
10225405 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Developing phylogenetic inference methods using hybrid, continuous and discrete, data, based on single-cell sequencing technologies
基于单细胞测序技术,使用混合、连续和离散数据开发系统发育推断方法
- 批准号:
2442432 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Studentship
Project C: Neural basis of causal inference in continuous navigation
项目 C:连续导航中因果推理的神经基础
- 批准号:
10615056 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Project C: Neural basis of causal inference in continuous navigation
项目 C:连续导航中因果推理的神经基础
- 批准号:
10400148 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
Project A: Theoretical framework for studying causal inference in trial-based and continuous tasks
项目 A:研究基于试验和连续任务中因果推理的理论框架
- 批准号:
10615039 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别: