A Video Indexing Ontology Using Fuzzy Metadata
使用模糊元数据的视频索引本体
基本信息
- 批准号:0535056
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-11-15 至 2009-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A Video Indexing Ontology Using Fuzzy MetadataVideo has been very difficult to understand by a machine. While humanshave a seemingly "direct" way of seeing something and understanding ascene in terms of background, foreground objects, and motions, videounderstanding has been one of the perplexing problems of automatic videoand image analysis to date.This project proposes a "divide and conquer" approach, where severalhundred general-purpose concepts (e.g., outdoors, animals) will be usedto describe and annotate a very large universe of scenes commonlydepicted in video. Analogously to a limited vocabulary set of indexingterms one might find in a library card catalog, each video scene can beannotated through a combination of these concepts ("metadata"). To gobeyond a mere listing of objects, actions and scenes visible in thevideo, carefully chosen concepts also allow the description ofrelationships between them ("ontology"), which allows for much richercomposite descriptions. The challenge will be to define these conceptsso that they satisfy several criteria at once:* The concepts must represent things frequently visible in videobroadcasts.* The concepts must be clearly identifiable to give computeralgorithms a chance to detect them automatically.* The concepts must be linkable into an ontology that defines howconcepts are related.Since video annotations, whether done by a computer or a human, alwayswill contain errors, this work will incorporate probabilistic confidencemetrics ("fuzzy metadata") into the annotation. No existing indexing andclassification schemes have explicitly defined standards for measuringand reporting errors and omissions of indexing annotations; sincelibrarians and archivists have traditionally assumed that an indexcontains only complete, trusted and verified metadata.Furthermore, the project will assess to what extent these concepts canbe automatically extracted with state of the art video analysistechniques. Using footage from documentaries and television news, theproject will perform video search and retrieval experiments to determinethe usefulness of the ontology and the confidence of the annotations.URL: http://www.informedia.cs.cmu.edu/ontology
使用模糊元数据的视频索引本体很难被机器理解。虽然人类在背景、前景物体和运动方面有一种看似“直接”的方式来观察和理解事物,但视频理解一直是自动视频和图像分析中令人困惑的问题之一。该项目提出了一种“分而治之”的方法,其中数百个通用概念(例如,户外,动物)将被用来描述和注释一个非常大的宇宙的场景通常描绘在视频中。类似于图书馆卡片目录中有限的索引术语集,每个视频场景都可以通过这些概念的组合(“元数据”)进行注释。为了超越视频中可见的对象、动作和场景的简单列表,精心选择的概念还允许描述它们之间的关系(“本体论”),这允许更丰富的复合描述。挑战将是定义这些概念,以便它们同时满足几个标准:* 这些概念必须代表在视频广播中经常可见的事物。 这些概念必须是清晰可识别的,以便计算机算法有机会自动检测它们。 这些概念必须被嵌入到一个定义概念如何相关的本体中。由于视频注释,无论是由计算机还是人类完成,总是会包含错误,这项工作将把概率置信度(“模糊元数据”)纳入注释。现有的索引和分类方案都没有明确定义标准来衡量和报告索引注释的错误和遗漏;因为图书管理员和档案管理员传统上认为索引只包含完整的、可信的和经过验证的元数据。此外,该项目将评估这些概念在多大程度上可以用最先进的视频分析技术自动提取。使用来自纪录片和电视新闻的片段,该项目将执行视频搜索和检索实验,以确定本体的有用性和注释的可信度。http://www.informedia.cs.cmu.edu/ontology
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Hauptmann其他文献
Learning to Identify TV News Monologues by Style and Context
学习根据风格和背景识别电视新闻独白
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Cees G. M. Snoek;Alexander Hauptmann - 通讯作者:
Alexander Hauptmann
Distinction of stress and non-stress tasks using facial action units
使用面部动作单元区分压力和非压力任务
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Carla Viegas;S. Lau;R. Maxion;Alexander Hauptmann - 通讯作者:
Alexander Hauptmann
News-on-Demand: An Application of Informedia® Technology
新闻点播:Infomedia® 技术的应用
- DOI:
10.1045/september95-hauptmann - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Alexander Hauptmann;M. Witbrock;Michael G. Christel - 通讯作者:
Michael G. Christel
Vox Populi Annotation: Measuring Intensity of Ideological Perspectives by Aggregating Group Judgments
Vox Populi解读:通过聚合群体判断来衡量意识形态观点的强度
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Wei;Alexander Hauptmann - 通讯作者:
Alexander Hauptmann
Towards a Large Scale Concept Ontology for Broadcast Video
广播视频的大规模概念本体
- DOI:
10.1007/978-3-540-27814-6_78 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Alexander Hauptmann - 通讯作者:
Alexander Hauptmann
Alexander Hauptmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Hauptmann', 18)}}的其他基金
Student Travel Support for 2019 ACM International Conference on Multimedia (ACM MM)
2019 年 ACM 国际多媒体会议 (ACM MM) 学生旅行支持
- 批准号:
1937998 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BIGDATA: Small: DA: Collaborative Research: Real Time Observation Analysis for Healthcare Applications via Automatic Adaptation to Hardware Limitations
BIGDATA:小型:DA:协作研究:通过自动适应硬件限制对医疗保健应用进行实时观察分析
- 批准号:
1638429 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Controlling a Robotic Third Hand - Exploring Use of Distributed Intelligence from Autonomy to Brain Machine Interfaces for Augmenting Human Capability
EAGER:控制机器人第三只手 - 探索使用从自主到脑机接口的分布式智能来增强人类能力
- 批准号:
1650994 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
BIGDATA: Small: DA: Collaborative Research: Real Time Observation Analysis for Healthcare Applications via Automatic Adaptation to Hardware Limitations
BIGDATA:小型:DA:协作研究:通过自动适应硬件限制对医疗保健应用进行实时观察分析
- 批准号:
1251187 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
DC: Small: Semantic Analysis of Large Multimedia Data Sets
DC:小型:大型多媒体数据集的语义分析
- 批准号:
0917072 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
HCC-Small: A Cognitive Assistive System for Coaching the Use of Home Medical Devices
HCC-Small:用于指导家庭医疗设备使用的认知辅助系统
- 批准号:
0812465 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRI: CRD: Collaborative Research: Large Analytics Library and Scalable Concept Ontology for Multimedia Research
CRI:CRD:协作研究:用于多媒体研究的大型分析库和可扩展概念本体
- 批准号:
0751185 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Towards Efficient In-storage Indexing
职业:实现高效的存储内索引
- 批准号:
2338457 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Scalable and Flexible Indexing of Compressed Sequences
职业:压缩序列的可扩展且灵活的索引
- 批准号:
2337891 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
AF: Small: Theoretical Aspects of Repetition-Aware Text Compression and Indexing
AF:小:重复感知文本压缩和索引的理论方面
- 批准号:
2315822 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Automated Indexing for Publication Types and Study Designs
出版物类型和研究设计的自动索引
- 批准号:
10715907 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
K-mer indexing for pan-genome reference annotation
用于泛基因组参考注释的 K-mer 索引
- 批准号:
10793082 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
CAREER: Algorithmic Aspects of Pan-genomic Data Modeling, Indexing and Querying
职业:泛基因组数据建模、索引和查询的算法方面
- 批准号:
2316691 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Plastic Surgery Assist System for Quantitative Indexing of Tissue Hemodynamics and Tissue Stiffness
用于组织血流动力学和组织硬度定量指标的整形外科辅助系统
- 批准号:
22K12773 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Indexing the Kansei value of traditional textiles based on the consumption process for sustainable fashion
基于可持续时尚的消费过程对传统纺织品的感性价值进行索引
- 批准号:
22K02180 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental research on indexing social responsiveness and its construction from a non-monetary perspective
非货币视角下社会响应指数及其构建的基础研究
- 批准号:
22K18569 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Uncovering cell-type-specific driver genes of Alzheimer's Disease by pathology-indexing scRNA-seq, spatial transcriptomics, and CRISPR screens
通过病理索引 scRNA-seq、空间转录组学和 CRISPR 筛选发现阿尔茨海默病的细胞类型特异性驱动基因
- 批准号:
10447348 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别: