Representation Theory and Double Affine Hecke Algebras
表示论和双仿射赫克代数
基本信息
- 批准号:0536962
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
he PI intends to undertake a combinatorial study of structuresarising from affine algebras with applications to representationtheory, mathematical physics and q-series.The primary combinatorial objects are crystal graphs on the onehand and rigged configurations on the other hand. Crystal basesprovide a combinatorial description of the deep theory of crystalbases of modules over quantized universal enveloping algebrasdeveloped by Kashiwara and Lusztig: As the quantum parameterq tends to zero, these bases are described precisely by thecrystal graphs encoding nearly all the essential algebraic data.Rigged configurations on the other hand encode the particlestructure of the underlying physical model and lead to fermionicformulas. It is proposed to study the crystal structureon rigged configurations and to tackle the long-standing problemof a combinatorial expression for the fusion coefficients.These studies will have applications to q-series, in particularthe Bailey lemma, the X=M conjecture, and the theory of symmetricfunctions.There are several ways of solving certain models in statisticalmechanics, namely via the corner-transfer-matrix method andthe Bethe Ansatz. Even though the two methods lead to verydifferent looking answers, they describe the same solutions. From the mathematical perspective this suggest that there existsa one-to-one map between the two indexing sets that describe thesolution. The elements in the index set corresponding to thecorner-transfer-matrix method are called crystal bases. The elementsin the index set corresponding to the Bethe Ansatz are calledrigged configurations. The PI proposes to study the mapbetween the two indexing sets, its properties and generalizationsin detail. This will have applications in many diverse areasof mathematics and physics, such as representation theory,combinatorics, and statistical mechanics.
PI 打算对仿射代数产生的结构进行组合研究,并将其应用于表示论、数学物理和 q 级数。主要的组合对象一方面是晶体图,另一方面是操纵配置。晶体基提供了对 Kashiwara 和 Lusztig 开发的量化通用包络代数上模块晶体基的深层理论的组合描述:当量子参数 q 趋于零时,这些基通过编码几乎所有基本代数数据的晶体图来精确描述。另一方面,操纵配置编码了粒子结构 基础物理模型并导出费米子公式。建议研究装配构型上的晶体结构,并解决融合系数的组合表达式这一长期存在的问题。这些研究将应用于 q 级数,特别是贝利引理、X=M 猜想和对称函数理论。解决统计力学中某些模型的方法有多种,即通过角转移矩阵方法和 贝特·安萨兹。尽管这两种方法会得出看起来截然不同的答案,但它们描述了相同的解决方案。从数学角度来看,这表明描述解决方案的两个索引集之间存在一对一的映射。与角转移矩阵方法对应的索引集中的元素称为晶体基。索引集中对应于 Bethe Ansatz 的元素称为操纵配置。 PI 建议详细研究两个索引集之间的映射、其属性和概括。这将在数学和物理学的许多不同领域都有应用,例如表示论、组合学和统计力学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bogdan Ion其他文献
Involutions of Double Affine Hecke Algebras
双仿射 Hecke 代数的对合
- DOI:
10.1017/s147474801300008x - 发表时间:
2012 - 期刊:
- 影响因子:0.9
- 作者:
Bogdan Ion - 通讯作者:
Bogdan Ion
Residues of quadratic Weyl group multiple Dirichlet series
二次外尔群多重狄利克雷级数的残数
- DOI:
10.1016/j.aim.2025.110359 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:1.500
- 作者:
Adrian Diaconu;Bogdan Ion;Vicenţiu Paşol;Alexandru A. Popa - 通讯作者:
Alexandru A. Popa
Probabilistic renormalization and analytic continuation
- DOI:
10.1016/j.jnt.2022.03.007 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:
- 作者:
Gunduz Caginalp;Bogdan Ion - 通讯作者:
Bogdan Ion
Bogdan Ion的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bogdan Ion', 18)}}的其他基金
From the Fundamental Lemma to Discrete Geometry, to Formal Verification
从基本引理到离散几何,再到形式验证
- 批准号:
1761653 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Evolution theory and survey observation of double white dwarf merger remnants
双白矮星合并遗迹的演化理论与勘测观测
- 批准号:
20K04010 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Representation Theory: A Double Conference
几何表示理论:双重会议
- 批准号:
2003536 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Quantizations and Double Affine Representation Theory
量化和双仿射表示理论
- 批准号:
2001139 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Capacitive density functional theory for structure and screening in ionic fluids and electric double layers with applications in sustainability
用于离子液体和双电层结构和筛选的电容密度泛函理论及其在可持续发展中的应用
- 批准号:
406121234 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
RUI: Using graph theory measures to probe oxygen vacancy and proton conduction in perovskites and double perovskites
RUI:利用图论方法探测钙钛矿和双钙钛矿中的氧空位和质子传导
- 批准号:
1709975 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Double Field Theory and Non-Geometric Backgrounds
双场论和非几何背景
- 批准号:
2025165 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship
Aspects of Double Field Theory and Exceptional Field Theory
双场论和例外场论的方面
- 批准号:
1783495 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Studentship
Freezing Enhancement for Supercooled Ice Nucleation by Electrostatic Cooling based on Double Layer Theory
基于双层理论的静电冷却强化过冷冰核
- 批准号:
16H04276 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interpretation and Application of Double Tax Treaties - A Comparative View on the Theory and Application of the Principle of Common Interpretation and the 'new' interpretation of Art. 23 A/B OECD-MC Exemplified by the Problems of Qualifying Income and Per
双重征税条约的解释和适用 - 共同解释原则的理论和应用的比较观点和 OECD-MC 第 23 A/B 条的“新”解释,以合格收入和个人所得税问题为例。
- 批准号:
284758003 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grants
Modeling of the electric double layer at metal oxide electrode/electrolyte interfaces with density functional theory based molecular dynamics
基于密度泛函理论的分子动力学模拟金属氧化物电极/电解质界面的双电层
- 批准号:
263270542 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Fellowships