From the Fundamental Lemma to Discrete Geometry, to Formal Verification

从基本引理到离散几何,再到形式验证

基本信息

  • 批准号:
    1761653
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

During June 18-22, 2018, the University of Pittsburgh will host an international conference entitled "From the Fundamental Lemma, to Discrete Geometry, to Formal Verification". The conference website can be accessed at http://www.mathematics.pitt.edu/hales60/. The aim of the conference is to explore the interface between the subjects listed in the title, with the primary focus on emphasizing similarities between different fields and finding new applications of existing techniques and methods from different areas. Major experts in each individual field will lecture on the main developments and applications, with the goal of making the ideas accessible to a non-expert audience. By bringing together researchers from the areas of Automorphic Forms, Motivic Integration, Discrete Geometry, and Formal Verification, we hope to highlight and deepen the connections between these areas.Among other things, the conference will highlight the structural relationship between the classical geometric methods of partitioning space used to prove the Kepler conjecture and the new methods of harmonic analysis used to prove the sphere packing results in higher dimensions. In addition, the conference will attempt to bring together the Formal Verification community and the community of researchers working on the formal logic-based version of motivic integration. Both fields share similar techniques and the exchange of ideas between the two fields should be very fruitful. Formal verification of (broadly adopted) encryption standards is ultimately an issue pertaining to the foundation of society, and the involvement of the mathematical community in such efforts is absolutely crucial. The conference will feature a session on formal verification of encryption standards, including a public lecture on a recently verified NIST cryptographic standard. The Formal Abstracts project aims to provide a semantic representation of (ultimately all) mathematical knowledge accessible to the society, and many of participants of this conference are active members of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2018年6月18-22日,匹兹堡大学将举办题为“从基本引理,到离散几何,到形式验证”的国际会议。会议网站可访问:http://www.mathematics.pitt.edu/hales60/。会议的目的是探索标题中列出的主题之间的接口,主要重点是强调不同领域之间的相似性,并寻找不同领域现有技术和方法的新应用。每个领域的主要专家将就主要发展和应用进行演讲,目的是让非专业观众也能理解这些想法。通过汇集自守形式、动机积分、离散几何和形式验证领域的研究人员,我们希望强调和加深这些领域之间的联系。除此之外,会议将重点介绍用于证明开普勒猜想的经典空间划分几何方法与用于证明更高维度球体堆积结果的调和分析新方法之间的结构关系。 此外,会议将尝试将形式验证社区和研究基于形式逻辑的动机整合版本的研究人员社区聚集在一起。这两个领域拥有相似的技术,两个领域之间的思想交流应该会非常富有成果。 (广泛采用的)加密标准的形式验证最终是一个与社会基础有关的问题,数学界参与此类工作绝对至关重要。会议将举办一场关于加密标准正式验证的会议,包括关于最近验证的 NIST 加密标准的公开讲座。正式摘要项目旨在为社会提供(最终所有)数学知识的语义表示,本次会议的许多参与者都是该项目的积极成员。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bogdan Ion其他文献

Involutions of Double Affine Hecke Algebras
双仿射 Hecke 代数的对合
Residues of quadratic Weyl group multiple Dirichlet series
二次外尔群多重狄利克雷级数的残数
  • DOI:
    10.1016/j.aim.2025.110359
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Adrian Diaconu;Bogdan Ion;Vicenţiu Paşol;Alexandru A. Popa
  • 通讯作者:
    Alexandru A. Popa
Probabilistic renormalization and analytic continuation
  • DOI:
    10.1016/j.jnt.2022.03.007
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gunduz Caginalp;Bogdan Ion
  • 通讯作者:
    Bogdan Ion

Bogdan Ion的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bogdan Ion', 18)}}的其他基金

Representation Theory and Double Affine Hecke Algebras
表示论和双仿射赫克代数
  • 批准号:
    0536962
  • 财政年份:
    2005
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SHF: Small: Data-Driven Lemma Synthesis for Interactive Proofs
协作研究:SHF:小型:交互式证明的数据驱动引理合成
  • 批准号:
    2220891
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Data-Driven Lemma Synthesis for Interactive Proofs
协作研究:SHF:小型:交互式证明的数据驱动引理合成
  • 批准号:
    2220892
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Regularity Lemmaの禁止部分グラフ条件への適用
将正则引理应用于禁止的子图条件
  • 批准号:
    20J15332
  • 财政年份:
    2020
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Genetic analysis of a leafy lemma mutant in barley
大麦叶状外稃突变体的遗传分析
  • 批准号:
    19K05971
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Arithmetic Fundamental Lemma for the Drinfeld space
德林菲尔德空间的算术基本引理
  • 批准号:
    428982207
  • 财政年份:
    2019
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Research Fellowships
Improvement of lemma generation and reasoning strategies for automated inductive theorem proving
自动归纳定理证明的引理生成和推理策略的改进
  • 批准号:
    16K16032
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The Inequality of John and Nirenberg and a Lemma of Bombieri
约翰和尼伦伯格的不等式以及邦别里引理
  • 批准号:
    496637-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    University Undergraduate Student Research Awards
Photosysnthetic activity of spikes measured by albino lemma mutants in barley
大麦白化外稃突变体测量穗的光合活性
  • 批准号:
    16K07556
  • 财政年份:
    2016
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CBMS Conference: The Basic Homotopy Lemma, The Asymptotic Uniqueness Theorem, and Classification of C*-Algebras, June 1-5, 2015
CBMS 会议:基本同伦引理、渐近唯一性定理和 C* 代数分类,2015 年 6 月 1-5 日
  • 批准号:
    1444450
  • 财政年份:
    2015
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Laminations in complex dynamics generated by Zalcman's lemma
由扎尔克曼引理生成的复杂动力学中的叠层
  • 批准号:
    24740103
  • 财政年份:
    2012
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了