DDDAS-Collaborative Proposal: Multiscale Data-Driven POD-Based Prediction of the Ocean
DDDAS-协作提案:多尺度数据驱动的基于 POD 的海洋预测
基本信息
- 批准号:0538373
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-10-01 至 2006-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will develop and validate with field experiments a new truly dynamic approach in forecasting the ocean state and associated uncertainties based on low-dimensional stochastic modeling that exploits the multiscale dynamics of the multivariate ocean. The main idea is to employ a few time-evolving POD (proper orthogonal decomposition) modes to parametrize the slow manifold, and subsequently to advance the solutionwith a large time step using a Galerkin-free/equation-free procedure. This approach is fundamentally different from the standard Galerkin method used often to produce evolution equations for reduced order modeling. Specifically, the new method uses only bursts of full simulations based on the Regional Ocean Model System (ROMS) and available experimental data, providing in essence a "closure-on-demand", in order to perform an equation-free time evolution. In such multiscale approach, the full simulation through ROMS resolves the fine scales whereas the Galerkin-free/POD method - the coarse component - propagates with large time steps the most energetic modes of velocity, temperature and salinity and corresponding uncertainty fields.Preliminary simulations using realistic data for the Massachusetts Bay suggest thatonly a few modes are sufficient in describing the most interesting ocean dynamics, and that time steps of a few hours, instead of seconds or minutes, can be used in the Galerkin- free procedure. These results demonstrate feasibility of the proposed approach and imply that such fast predictions requiring very small computational cost and communications can indeed be performed on board of autonomous underwater vehicles (AUVs). Hence, these AUVs are endowed with navigation intelligence and true autonomy. This approach will be verified with full ROMS simulations and will be validated with three field experiments in the Cape Cod Bay. The final experiment in the third year of theprogram will demonstrate the DDDAS concept in ocean forecasting. The project willleverage the AUV fleet and other measurement resources as well as unique expertise for such missions of the MIT Sea Grant. The overall contribution of this project is a new paradigm in predicting the ocean state in real-time. Fundamental specific contributions include construction of time-dependent covariance kernels required in obtaining time-evolving POD modes; numerical analysis of the projective time-integration involved in the Galerkin-free multiscale procedure; representation of stochasticity via adaptive generalized polynomial chaos for uncertainty predictions; and rigorous protocols for data gathering in the ocean in the spirit of DDDAS.
该项目将在利用多变量海洋的多尺度动力学的低维随机建模的基础上,开发和验证一种新的真正动态的方法来预测海洋状况和相关的不确定性。其主要思想是使用几个时间演化的POD(真正交分解)模式来参数化慢流形,然后使用无Galerkin/无方程的方法以大的时间步长推进解。这种方法从根本上不同于标准的Galerkin方法,该方法通常用于生成用于降阶建模的演化方程。具体地说,新方法只使用基于区域海洋模式系统(ROMS)和现有实验数据的一连串完整模拟,本质上提供了一种“按需关闭”,以便执行无方程的时间演化。在这种多尺度方法中,通过ROMS进行的完全模拟解决了细尺度问题,而粗略分量Galerkin-Free/POD方法以大的时间步长传播了最高能量的速度、温度和盐度模式以及相应的不确定性场。使用马萨诸塞湾的真实数据进行的初步模拟表明,只有少数几个模式足以描述最有趣的海洋动力学,在Galerkin-Free过程中可以使用几个小时的时间步长,而不是秒或分钟。这些结果证明了该方法的可行性,并表明这种只需要很小的计算量和通信量的快速预测确实可以在自主水下航行器(AUV)上执行。因此,这些AUV被赋予导航智能和真正的自主性。该方法将通过全ROMS模拟进行验证,并将通过在科德角海湾进行的三个现场实验进行验证。该计划第三年的最后实验将演示海洋预报中的DDDAS概念。该项目将利用AUV舰队和其他测量资源,以及麻省理工学院海洋赠款这类任务的独特专业知识。该项目的总体贡献是在实时预测海洋状态方面的一个新范式。基本的具体贡献包括构建获得随时间演变的POD模式所需的依赖时间的协方差核;对无Galerkin多尺度程序中涉及的投影时间积分进行数值分析;通过用于不确定性预测的自适应广义多项式混沌来表示随机性;以及本着DDDAS的精神在海洋中收集数据的严格协议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chryssostomos Chryssostomidis其他文献
Chryssostomos Chryssostomidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chryssostomos Chryssostomidis', 18)}}的其他基金
U.S.-Egypt Workshop on Sustainable Coastal Development, Cairo, Egypt, April 1999
美国-埃及可持续沿海发展研讨会,埃及开罗,1999 年 4 月
- 批准号:
9818372 - 财政年份:1998
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Joint US/UK Workshop for Environmental Monitoring with Unmanned Underwater Vehicles, March 1994, United Kingdom
美国/英国无人水下航行器环境监测联合研讨会,1994 年 3 月,英国
- 批准号:
9402356 - 财政年份:1994
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Engineering Research Equipment: Sensors to Advance Autonomous Underwater Vehicles as Oceanographic Research Tools
工程研究设备:推进自主水下航行器作为海洋学研究工具的传感器
- 批准号:
9311151 - 财政年份:1994
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Engineering Research Equipment: Electronics to Develop Autonomous Underwater Vehicles
工程研究设备:开发自主水下航行器的电子设备
- 批准号:
9212679 - 财政年份:1992
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Applications for an Autonomous Underwater Vehicle A Case Study of Issues of Complexity in Undergraduate Engineering Design
自主水下航行器的应用本科工程设计复杂性问题的案例研究
- 批准号:
9101004 - 财政年份:1991
- 资助金额:
$ 7.5万 - 项目类别:
Continuing grant
Conference on Arctic Technology and Policy
北极技术与政策会议
- 批准号:
8307853 - 财政年份:1983
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
New Developments in Support of Design Instruction For Ocean Based Sys
支持海洋系统设计教学的新进展
- 批准号:
7305985 - 财政年份:1974
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative proposal: Workshop on ecological impacts of solar radiation management geoengineering; February, 2020; Port Jefferson, NY; October, 2020; Minneapolis, MN
合作提案:太阳辐射管理地球工程的生态影响研讨会;
- 批准号:
2343519 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Proposal: How to Gel Oil (or Water) in an Immiscible Oil-Water Mixture: A Systematic Study of Phase-Selective Gelation
合作提案:如何在不混溶的油水混合物中胶凝油(或水):相选择性胶凝的系统研究
- 批准号:
2226533 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Proposal: SaTC: Frontiers: Center for Distributed Confidential Computing (CDCC)
协作提案:SaTC:前沿:分布式机密计算中心 (CDCC)
- 批准号:
2401496 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: SaTC: CORE: 2.0 Vision Proposal
协作研究:会议:SaTC:核心:2.0 愿景提案
- 批准号:
2316833 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: EPIIC: Collaborative Proposal: LIGHT UP: Leveraging Innovation to Grow High Tech and University Partnerships
合作研究: 研究基础设施: EPIIC: 合作提案: LIGHT UP: 利用创新发展高科技和大学合作伙伴关系
- 批准号:
2331570 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Conference: SaTC: CORE: 2.0 Vision Proposal
协作研究:会议:SaTC:核心:2.0 愿景提案
- 批准号:
2316832 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: EPIIC: Collaborative Proposal: LIGHT UP: Leveraging Innovation to Grow High Tech and University Partnerships
合作研究: 研究基础设施: EPIIC: 合作提案: LIGHT UP: 利用创新发展高科技和大学合作伙伴关系
- 批准号:
2331572 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: EPIIC: Collaborative Proposal: LIGHT UP: Leveraging Innovation to Grow High Tech and University Partnerships
合作研究: 研究基础设施: EPIIC: 合作提案: LIGHT UP: 利用创新发展高科技和大学合作伙伴关系
- 批准号:
2331569 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant