Constraint Based Algorithms for Protein Folding
基于约束的蛋白质折叠算法
基本信息
- 批准号:0539041
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-15 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:The Division of Materials Research and the Division of Mathematical Sciences contribute funding to this award which falls under the NSF-wide Mathematical Sciences Priority Area and contributes to cyberinfrastructure. This award supports theoretical and computational research in the area of protein folding and the solution of inverse problems. The PI plans to apply a successful solution search strategy in the area of phase retrieval to the problem of protein folding. The key elements of this method are constraint projections in a Euclidean space that with minimal effort restore a particular constraint to an arbitrary input point. Many problems can be formulated in terms of their solution points being in the intersection of just two constraint sets. For such problems a dynamical system can be defined in terms of the corresponding constraint projections with the solution to the set intersection problem encoded in its fixed points. Constraint based algorithms are the method of choice in phase retrieval and may offer significant advantages, over mainstream sampling algorithms, in protein structure prediction.As in phase retrieval, where a significant computational advantage is conferred by overdetermined constraint sets, a similar gain is expected when folding sequences that are well designed. Experiments with simple heteropolymer models of proteins, where the two constraints correspond to chain geometry and monomer packing, show promise that this approach can be extended to realistic models. This project will also develop a novel form of distributed computing made possible by the chaotic dynamics of the constraint based search.The next generation of scientists and engineers will increasingly rely on shared data bases and standardized computing protocols in the conduct of their work. A significant component of this project is the development of a miniature realization of such a work environment called "semiprotein world". Semiproteins are model proteins with highly simplified properties, but which pose many of the same challenges posed by real proteins. Through a collection of software tools, including a web-based semiprotein data bank, semiprofessional researchers with web access will be able to design and fold semiproteins, and then deposit their findings in the data base. The design of semiprotein world will involve on-site participation of Ithaca area high school students and undergraduates in the Cornell Center for Materials Research NSF-REU program.NON-TECHNICAL SUMMARY:The Division of Materials Research and the Division of Mathematical Sciences contribute funding to this award which falls under the NSF-wide Mathematical Sciences Priority Area and contributes to cyberinfrastructure. This award supports theoretical and computational research in the area of protein folding. Proteins are major constituents of biological cells and play important roles in structure and function in living organisms. In order to carry out their biological function, the protein undergoes a kind of self-assemble to assume a particular shape or fold. The shape of a folded protein, how it folds and how it does it so quickly are key fundamental questions in understanding its function. Currently exiting computer simulation methods are very computationally intense. Here the PI will exploit fundamental connections between the problem of protein folding and microscopies that seek to develop an image from imperfect data, e.g. x-ray diffraction, to further develop a powerful new algorithm for protein folding to overcome the barrier of long simulation time. Preliminary results suggest that the algorithm will be far more computationally efficient than current methods.The next generation of scientists and engineers will increasingly rely on shared data bases and standardized computing protocols in the conduct of their work. A significant component of this project is the development of a miniature realization of such a work environment called "semiprotein world". Semiproteins are model proteins with highly simplified properties, but which pose many of the same challenges posed by real proteins. Through a collection of software tools, including a web-based semiprotein data bank, semiprofessional researchers with web access will be able to design and fold semiproteins, and then deposit their findings in the data base. The design of semiprotein world will involve on-site participation of Ithaca area high school students and undergraduates in the Cornell Center for Materials Research NSF-REU program.
技术摘要:材料研究部和数学科学部为该奖项提供资金,该奖项属于 NSF 范围内的数学科学优先领域,并为网络基础设施做出了贡献。该奖项支持蛋白质折叠领域的理论和计算研究以及反问题的解决。 PI 计划将相检索领域的成功解决方案搜索策略应用于蛋白质折叠问题。该方法的关键要素是欧几里德空间中的约束投影,它可以用最小的努力将特定约束恢复到任意输入点。许多问题可以根据其解点位于两个约束集的交集中来表述。对于此类问题,可以根据相应的约束投影来定义动态系统,并将集合交集问题的解编码在其固定点中。基于约束的算法是相位检索中的首选方法,在蛋白质结构预测方面,与主流采样算法相比,它可以提供显着的优势。与相位检索一样,超定约束集赋予了显着的计算优势,当折叠设计良好的序列时,预计会获得类似的增益。使用简单的蛋白质杂聚物模型进行的实验(其中两个约束对应于链几何形状和单体堆积)表明这种方法可以扩展到现实模型。该项目还将开发一种新颖的分布式计算形式,通过基于约束的搜索的混沌动力学使之成为可能。下一代科学家和工程师在工作中将越来越依赖共享数据库和标准化计算协议。该项目的一个重要组成部分是开发一种称为“半蛋白世界”的工作环境的微型实现。半蛋白是具有高度简化特性的模型蛋白,但它提出了许多与真实蛋白相同的挑战。通过一系列软件工具,包括基于网络的半蛋白数据库,具有网络访问权限的半专业研究人员将能够设计和折叠半蛋白,然后将他们的发现存入数据库。半蛋白世界的设计将涉及康奈尔材料研究中心 NSF-REU 计划的伊萨卡地区高中生和本科生的现场参与。 非技术摘要:材料研究部和数学科学部为该奖项提供资金,该奖项属于 NSF 数学科学优先领域,并为网络基础设施做出贡献。该奖项支持蛋白质折叠领域的理论和计算研究。蛋白质是生物细胞的主要成分,在生物体的结构和功能中发挥着重要作用。为了执行其生物学功能,蛋白质经历一种自组装以呈现特定的形状或折叠。折叠蛋白质的形状、它如何折叠以及它如何如此快速地折叠是理解其功能的关键基本问题。目前现有的计算机模拟方法计算量非常大。在这里,PI 将利用蛋白质折叠问题和显微镜之间的基本联系,寻求从不完美的数据中开发图像,例如X射线衍射,进一步开发强大的蛋白质折叠新算法,克服模拟时间长的障碍。初步结果表明,该算法的计算效率将远远高于当前方法。下一代科学家和工程师在工作中将越来越依赖共享数据库和标准化计算协议。该项目的一个重要组成部分是开发一种称为“半蛋白世界”的工作环境的微型实现。半蛋白是具有高度简化特性的模型蛋白,但它提出了许多与真实蛋白相同的挑战。通过一系列软件工具,包括基于网络的半蛋白数据库,具有网络访问权限的半专业研究人员将能够设计和折叠半蛋白,然后将他们的发现存入数据库。半蛋白世界的设计将邀请伊萨卡地区高中生和本科生现场参与康奈尔材料研究中心 NSF-REU 项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Veit Elser其他文献
Nuclear antiferromagnetism in a registered 3He solid.
- DOI:
10.1103/physrevlett.62.2405 - 发表时间:
1989-05 - 期刊:
- 影响因子:8.6
- 作者:
Veit Elser - 通讯作者:
Veit Elser
Quantum dimer calculations on the spin-1/2 kagome-acute Heisenberg antiferromagnet.
自旋 1/2 kagome 锐海森堡反铁磁体的量子二聚体计算。
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Chen Zeng;Veit Elser - 通讯作者:
Veit Elser
High resolution electron microscopy of Al-Cu-Fe quasicrystals: Atomic structure and modeling
- DOI:
10.1557/jmr.1993.0024 - 发表时间:
2016-02-18 - 期刊:
- 影响因子:2.900
- 作者:
William Krakow;David P. DiVincenzo;Peter A. Bancel;Eric Cockayne;Veit Elser - 通讯作者:
Veit Elser
Veit Elser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Veit Elser', 18)}}的其他基金
ITR - ASE - Sim: Iterative Algorithms for solving Difficult Inverse Problems
ITR - ASE - Sim:解决困难反问题的迭代算法
- 批准号:
0426568 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
- 批准号:
24K15089 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
- 批准号:
2338171 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
AI innovation in the supply chain of consumer packaged-goods for recognising objects in retail execution, supply chain management and smart factories: using novel diffusion-based optimisation algorithms and diffusion-based generative models
消费包装商品供应链中的人工智能创新,用于识别零售执行、供应链管理和智能工厂中的对象:使用新颖的基于扩散的优化算法和基于扩散的生成模型
- 批准号:
10081810 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
- 批准号:
10714930 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Designing Bayesian based Adaptive Resource Constrained Hardware Algorithms for Next Generation of Embedded Systems
为下一代嵌入式系统设计基于贝叶斯的自适应资源受限硬件算法
- 批准号:
2890421 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
- 批准号:
23K03266 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
OAC Core: High Performance Computing Algorithms and Software for large-scale Mass Spectrometry based Omics
OAC Core:基于大规模质谱组学的高性能计算算法和软件
- 批准号:
2312599 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Reinforcement Learning-Based Control of Heterogeneous Multi-Agent Systems in Structured Environments: Algorithms and Complexity
职业:结构化环境中异构多智能体系统的基于强化学习的控制:算法和复杂性
- 批准号:
2237830 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Title: Moving medically certifiable AI algorithms from the Cloud and onto the Medi-OS Operating System of Medical Devices to automate, make robust and increase uptake of AI in healthcare: Use-case will be community-based spirometry.
标题:将医学认证的人工智能算法从云端转移到医疗设备的 Medi-OS 操作系统上,以实现自动化、稳健并增加人工智能在医疗保健领域的采用:用例将是基于社区的肺活量测定。
- 批准号:
10064449 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Collaborative R&D
Collaborative Research: CISE-MSI: DP: IIS RI: Research Capacity Expansion via Development of AI Based Algorithms for Optimal Management of Electric Vehicle Transactions with Grid
合作研究:CISE-MSI:DP:IIS RI:通过开发基于人工智能的算法来扩展研究能力,以实现电动汽车与电网交易的优化管理
- 批准号:
2318611 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant