Understanding and controlling optical excitations in individual hybrid nanostructures
了解和控制单个混合纳米结构中的光激发
基本信息
- 批准号:173363039
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hybrid nanostructures, the combination of two or more nanoscale materials to form a new heterostructure, are being actively pursued for a number of potential applications including lightharvesting, quantum dot lasers, chemical and biological sensing, and quantum computation. This interest is driven by the fact that the integration of two nanoscale material systems can lead to structures that exhibit novel properties, such as, enhanced photoluminescence, chemical activity, or carrier transfer, which result from the coupling between the individual components. For example, metals and semiconductors are two classes of materials with very different properties and combining them to form hybrid nanomaterials is of fundamental interest. Whereas metals can confine light on the nanoscale, semiconductors provide switching functionality and their combination promises high-density ultrafast nanophotonic integrated circuitry. Consequently, however, the development and control of the potentially unique properties found in hybrid nanostructures requires a thorough understanding of the coupling between the hybridized component materials.Intellectual Merit - This proposal focuses on exploring the fundamental microscopic mechanisms governing the optical excitations of two specific hybrid material systems of common interest, namely (1) quantum-dot/quantum-well semiconductor based hybrid nanostructures coupled via tunneling and (2) metal/semiconductor hybrid nanostructures coupled via their exciton and plasmon resonances. The goal of the proposed research is to elucidate the mechanisms governing the optical response and energy transfer in well-defined nanoscale hybrid nanostructures. Establishment of the relationships between structure and function in these systems would lead to disruptive new knowledge with impact on a range of applications, including plasmonic and quantum dot lasers, biosensors, and energy conversion. The core innovation in this proposal lies in the fabrication, optical probing and simulation of novel nanoscale hybrid structures and architectures whose geometrical parameters can be systematically tuned.Exploring these hybrid material systems requires a concerted effort in nanofabrication, coherent optical spectroscopy and theoretical modeling, a fundamental reason for proposing an international collaboration between an American and German research team. The American team consists of researchers at the University of Arkansas who are partners with the University of Oklahoma in an NSFsupported Materials Research Science and Engineering Center. This team is especially talented in the growth by molecular beam epitaxy, characterization by scanning tunneling microscopy, and the characterization of the optical behavior of nanostructures and the interactions between them. The German team consists of researchers at the Institut für Physik, at the University of Oldenburg, who have many years of experience in the development and application of ultrafast and nanoscale optical spectroscopy tools to study the coherent optical behavior of both single and arrays of hybrid nanostructures. Together, both teams have the experience, talent, and infrastructure to break new ground in the understanding of the material science and physics of coupling in hybrid nanostructures. The potential for a strong team effort, which has already begun to form over the last year and a half, is evidenced by exchange visits between both teams as well as recent collaborative publication.Broader Impact – From a purely technical point of view, this proposal presents an opportunity for the development of a detailed microscopic understanding of the interactions between the elementary optical excitations of a semiconductor quantum dot, or exciton, and the elementary optical excitation of a metal nanoparticle (MNP), or surface plasmon polariton, as well as the coherent and incoherent resonant coupling between a single quantum dot and quantum well.In addition, since students will eventually work in a global market there is no better preparation for international collaboration than … international collaboration. By working with a team on an international scale there is a new dimension added to student teamwork, requiring students to handle collaboration that is remote, cross-cultural, and linguistically challenging. As part of this proposal an aggressive outreach plan to both K-12 American and German students is presented that will further provide an opportunity for the sharing of cultures. The progress and plans for diversity is also discussed.
混合纳米结构,两种或更多种纳米级材料的组合以形成新的异质结构,正在积极地追求许多潜在的应用,包括光捕获,量子点激光器,化学和生物传感以及量子计算。这种兴趣是由以下事实驱动的:两种纳米级材料系统的集成可以导致表现出新特性的结构,例如增强的光致发光、化学活性或载流子转移,这些特性是由各个组件之间的耦合引起的。例如,金属和半导体是两类具有非常不同性质的材料,将它们结合形成混合纳米材料具有根本意义。金属可以将光限制在纳米级,而半导体提供开关功能,它们的组合有望实现高密度超快纳米光子集成电路。因此,然而,在混合纳米结构中发现的潜在独特性质的开发和控制需要对混合组分材料之间的耦合的透彻理解。智力优点-本提案侧重于探索共同感兴趣的两种特定混合材料系统的光学激发的基本微观机制,即(1)通过隧穿耦合的基于量子点/量子阱半导体的混合纳米结构和(2)通过它们的激子和等离子体共振耦合的金属/半导体混合纳米结构。该研究的目标是阐明在定义明确的纳米级混合纳米结构中的光学响应和能量传递的机制。在这些系统中建立结构和功能之间的关系将导致颠覆性的新知识,对一系列应用产生影响,包括等离子体和量子点激光器,生物传感器和能量转换。该项目的核心创新在于新型纳米级混合结构和体系的制造、光学探测和模拟,其几何参数可以系统地调整。探索这些混合材料系统需要在纳米纤维、相干光谱和理论建模方面的共同努力,这是提出美国和德国研究团队之间国际合作的根本原因。美国研究小组由阿肯色州大学的研究人员组成,他们与俄克拉荷马州大学在NSF支持的材料研究科学与工程中心合作。该团队在分子束外延生长、扫描隧道显微镜表征、纳米结构的光学行为表征以及它们之间的相互作用方面特别有才华。德国团队由奥尔登堡大学物理研究所的研究人员组成,他们在开发和应用超快和纳米级光学光谱工具以研究单个和混合纳米结构阵列的相干光学行为方面拥有多年的经验。两个团队共同拥有经验、人才和基础设施,可以在理解混合纳米结构中的材料科学和耦合物理学方面开辟新天地。在过去的一年半时间里,两个团队之间的互访以及最近的合作出版物都证明了强大团队努力的潜力。更广泛的影响-从纯技术的角度来看,这一提议为发展对半导体量子点的基本光激发之间相互作用的详细微观理解提供了机会,激子,金属纳米粒子(MNP)的基本光激发,表面等离子体激元,以及单个量子点和量子阱之间的相干和非相干共振耦合。此外,由于学生最终将在全球市场工作,因此没有比国际合作更好的国际合作准备。通过在国际范围内与团队合作,学生团队合作增加了一个新的维度,要求学生处理远程,跨文化和语言挑战性的协作。作为这项提案的一部分,提出了一项针对K-12美国和德国学生的积极推广计划,这将进一步为文化共享提供机会。还讨论了多样性的进展和计划。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of tunneling transfer on thermal redistribution of carriers in hybrid dot-well nanostructures
- DOI:10.1063/1.4779686
- 发表时间:2013-01-21
- 期刊:
- 影响因子:3.2
- 作者:Mazur, Yu. I.;Dorogan, V. G.;Salamo, G. J.
- 通讯作者:Salamo, G. J.
Dynamic configurational resonances caused by optical nonlinearities in ultra-fast near-field microscopy
超快近场显微镜中光学非线性引起的动态构型共振
- DOI:10.1088/2040-8978/15/3/035204
- 发表时间:2013
- 期刊:
- 影响因子:2.1
- 作者:V. Lozovski;V. Vasilenko;G. G. Tarasov;C. Lienau;Y. I. Mazur;G. J. Salamo
- 通讯作者:G. J. Salamo
Effect of resonant tunneling on exciton dynamics in coupled dot-well nanostructures
- DOI:10.1063/1.4801891
- 发表时间:2013-04-21
- 期刊:
- 影响因子:3.2
- 作者:Guzun, D.;Mazur, Yu. I.;Salamo, G. J.
- 通讯作者:Salamo, G. J.
Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates
- DOI:10.1038/nphoton.2012.340
- 发表时间:2013-02-01
- 期刊:
- 影响因子:35
- 作者:Vasa, Parinda;Wang, Wei;Lienau, Christoph
- 通讯作者:Lienau, Christoph
State filling dependent luminescence in hybrid tunnel coupled dot-well structures.
混合隧道耦合点阱结构中的状态填充相关发光
- DOI:10.1039/c2nr32477f
- 发表时间:2012
- 期刊:
- 影响因子:6.7
- 作者:Y. I. Mazur;V. G. Dorogan;M. E. Ware;E. Marega;M. Benamara;Z. Y. Zhuchenko;G. G. Tarasov;C. Lienau;G. J. Salamo
- 通讯作者:G. J. Salamo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christoph Lienau, Ph.D.其他文献
Professor Dr. Christoph Lienau, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christoph Lienau, Ph.D.', 18)}}的其他基金
Fluctuation-dominated materials for advanced photonics
用于先进光子学的涨落主导材料
- 批准号:
278748183 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Priority Programmes
Physics and applications of a novel nanometer-sized femtosecond electron souce
新型纳米级飞秒电子源的物理及应用
- 批准号:
137912904 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Exciton-plasmon interaction in metal-semiconductor hybrid nanostructures
金属-半导体混合纳米结构中的激子-等离子体相互作用
- 批准号:
138525804 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Optical excitation transfer via optical near-field interactions: devices and characterizations
通过光学近场相互作用的光激发传输:设备和表征
- 批准号:
94622341 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
阴离子聚合速度及副反应控制机理及其用于(甲基)丙烯酸酯室温以上常规聚合的研究
- 批准号:50933002
- 批准年份:2009
- 资助金额:200.0 万元
- 项目类别:重点项目
混沌控制和同步中几个问题
- 批准号:10372054
- 批准年份:2003
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Design hierarchical structure of mixed carrageenan gels for controlling mechanical properties
设计混合卡拉胶凝胶的分层结构以控制机械性能
- 批准号:
23K12678 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
An optical-genetic toolbox for monitoring and controlling diverse neuromodulatory circuits governing complex behaviors in primates
用于监测和控制灵长类动物复杂行为的多种神经调节回路的光遗传工具箱
- 批准号:
10650669 - 财政年份:2023
- 资助金额:
-- - 项目类别:
High-speed processing of low-loss optical waveguides by controlling the distribution of electron excitation using spatial light modulation
通过空间光调制控制电子激发分布来高速处理低损耗光波导
- 批准号:
22K20399 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Controlling Gold(I) Clustering at Pnictogen Center with N-Heterocyclic Carbene Ligands and Their Optical Properties
N-杂环卡宾配体控制金(I)在磷元素中心的团聚及其光学性质
- 批准号:
22K14691 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Characterizing and controlling optical and vibrational dynamics of single-photon emitting defects in hexagonal boron nitride
表征和控制六方氮化硼中单光子发射缺陷的光学和振动动力学
- 批准号:
2128240 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Optogenetic manipulation of cortical feedback for controlling network coding and behavior
皮层反馈的光遗传学操作用于控制网络编码和行为
- 批准号:
10305623 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Optical Dissection of the Neural Circuitry Controlling Sensorimotor Gating
控制感觉运动门控的神经回路的光学解剖
- 批准号:
9895866 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Magnetic-electric-optical multi-functionality of nano-granular film by controlling the shape of magnetic nano-particle
通过控制磁性纳米颗粒的形状实现纳米颗粒薄膜的磁电光多功能
- 批准号:
19K21102 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation of the relationship between positional information and cell identity by controlling the nuclear dynamics using optical manipulation
通过使用光学操纵控制核动力学来研究位置信息和细胞身份之间的关系
- 批准号:
18K19331 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Implement the firmware for controlling an optical polarity test instrument
实现用于控制光学极性测试仪器的固件
- 批准号:
533345-2018 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)