Characterizing and controlling optical and vibrational dynamics of single-photon emitting defects in hexagonal boron nitride
表征和控制六方氮化硼中单光子发射缺陷的光学和振动动力学
基本信息
- 批准号:2128240
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical Description.Ultrasensitive quantum sensors and unbreakable quantum cryptography technologies use single photons (particles of light) or pairs of photons to detect, encode, transmit and retrieve quantum information. Hence materials in which single photons can be generated and manipulated on demand are essential to deploying user-friendly quantum technologies. This project focuses on finding, characterizing and manipulating single-photon emitters in hexagonal boron nitride (hBN). Ensembles of single-photon emitters are known to exist in hBN, and they are extremely bright and stable at room temperature. Crystal vibrations will be manipulated in this project to improve the color purity of the single-photon emitters. This take advantage of the fact that crystal vibrations of hBN couple to the photon emitters at room temperature just as light and sound are coupled through the photoacoustic effect discovered by Alexander Graham Bell. Success in this project will have a transformative impact on quantum-device technologies because hBN emitters can be packaged in an on-chip format that is compatible with microelectronics and fiber-optic communications. The project will train students in quantum information sciences through a multi-disciplinary approach that connects optics, materials and computational science. Established outreach programs at Vanderbilt’s Center for Science Outreach and Center for Teaching will prepare the project team to visit middle- and high-school classes in Nashville city schools and underserved neighboring counties, to inspire and encourage future study and work in quantum science and technology. A diverse, inclusive research team will be built in partnership with the decades-old Bridge-to-Ph.D. program connecting students from Historically Black Fisk University to Vanderbilt research groups.Technical Description.Scalable quantum technologies based on light require well-characterized, controllable solid-state, single-photon emitters that can be manipulated and entangled on demand. Ensembles of crystal defects in hexagonal boron nitride (hBN) host single-photon emitters with a constellation of useful properties: ultra-high brightness, narrow linewidth, and photostability at room temperature, and hyperbolic phonon polaritons with an exceptionally large photon density of states in the mid-infrared are also supported in hBN. However, the large spectral mismatch between quantum-emitter frequencies (visible vs near-infrared) and hyperbolic-polariton and phonon frequencies (mid-infrared) makes it difficult to exploit all of these desirable properties simultaneously. This project will capitalize on the high phonon density of states in hBN to control single-photon emission and increase spectral purity by anti-Stokes pumping of phonon sidebands. Spectrally and temporally resolved near-field spectroscopy and microscopy will be deployed to identify and characterize individual single-photon emitters in mono- and few-layer hBN flakes by photoluminescence, nano Fourier-transform infrared spectrometry and photon-correlation studies; determine electronic properties of emitting states and the vibrational interactions that couple to them using nano-optical scanning probe microscopy in the mid-infrared; demonstrate active control of emitter lifetime and frequency by locally varying the dielectric environment of the emitter by pumping anti-Stokes photon modes; and explore the effects of phonon-emitter coupling and local strain on spectral purity and photon entanglement between two emitters on the same hBN flake. By characterizing individual single-quantum emitters in hBN and demonstrating controlled entanglement, the project opens a transformative path to planar, room-temperature devices for quantum cryptography, computation and sensing in a form factor intrinsically adaptable to on-chip geometries and optical-fiber coupling. These experiments will resolve long-standing uncertainties about the physical properties of the defect-based single-photon emitters in hBN, enabling a deeper understanding of the physical mechanisms underlying emission and entanglement. Controlling photon purity through the anti-Stokes mechanism and controlled strain gradients in single flakes of hBN may also enhance the stability of photon entanglement by separating the strain mechanism and electron-phonon coupling from the electronic process of single-quantum emission.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述。超灵敏量子传感器和牢不可破的量子密码技术使用单光子(光粒子)或光子对来检测、编码、传输和检索量子信息。因此,可以按需生成和操纵单光子的材料对于部署用户友好的量子技术至关重要。 该项目的重点是寻找、表征和操纵六方氮化硼 (hBN) 中的单光子发射器。已知六方氮化硼中存在单光子发射体集合,它们在室温下非常明亮且稳定。该项目将操纵晶体振动来提高单光子发射器的颜色纯度。这利用了这样一个事实:六方氮化硼的晶体振动在室温下耦合到光子发射器,就像光和声音通过亚历山大·格雷厄姆·贝尔发现的光声效应耦合一样。该项目的成功将对量子器件技术产生变革性影响,因为六方氮化硼发射器可以采用与微电子和光纤通信兼容的片上格式封装。 该项目将通过连接光学、材料和计算科学的多学科方法对学生进行量子信息科学方面的培训。范德比尔特科学外展中心和教学中心设立的外展项目将为项目团队做好准备,参观纳什维尔市学校和服务不足的邻近县的初中和高中班级,以启发和鼓励未来在量子科学和技术方面的学习和工作。将与拥有数十年历史的桥梁博士合作伙伴关系建立一个多元化、包容性的研究团队。该计划将历史悠久的布莱克菲斯克大学的学生与范德比尔特研究小组联系起来。技术描述。基于光的可扩展量子技术需要特征良好、可控的固态单光子发射器,这些发射器可以根据需要进行操纵和纠缠。六方氮化硼 (hBN) 中的晶体缺陷集合具有单光子发射器,具有一系列有用的特性:超高亮度、窄线宽和室温下的光稳定性,以及在中红外区域具有异常大光子态密度的双曲声子极化激元。然而,量子发射器频率(可见光与近红外)与双曲极化子和声子频率(中红外)之间的巨大光谱不匹配使得很难同时利用所有这些理想的特性。 该项目将利用六方氮化硼的高声子态密度来控制单光子发射,并通过声子边带的反斯托克斯泵浦来提高光谱纯度。将部署光谱和时间分辨近场光谱和显微镜,通过光致发光、纳米傅里叶变换红外光谱和光子相关研究来识别和表征单层和几层六方氮化硼薄片中的单个单光子发射器;使用中红外纳米光学扫描探针显微镜确定发射态的电子特性以及与其耦合的振动相互作用;通过泵浦反斯托克斯光子模式来局部改变发射器的介电环境,展示对发射器寿命和频率的主动控制;并探索声子发射器耦合和局部应变对同一六方氮化硼片上两个发射器之间的光谱纯度和光子纠缠的影响。 通过表征六方氮化硼中的单个单量子发射器并展示受控纠缠,该项目为平面室温器件开辟了一条变革之路,用于量子加密、计算和传感,其外形尺寸本质上适合片上几何结构和光纤耦合。 这些实验将解决六方氮化硼中基于缺陷的单光子发射器物理性质长期存在的不确定性,使人们能够更深入地了解发射和纠缠背后的物理机制。 通过反斯托克斯机制和六方氮化硼单片中的受控应变梯度来控制光子纯度,还可以通过将应变机制和电子声子耦合与单量子发射的电子过程分开来增强光子纠缠的稳定性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Real-space nanoimaging of hyperbolic shear polaritons in a monoclinic crystal
- DOI:10.1038/s41565-022-01264-4
- 发表时间:2022-12-12
- 期刊:
- 影响因子:38.3
- 作者:Hu, Guangwei;Ma, Weiliang;Qiu, Cheng-Wei
- 通讯作者:Qiu, Cheng-Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Haglund其他文献
Richard Haglund的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Haglund', 18)}}的其他基金
New phenomena at the interface between 2D materials and liquids
二维材料与液体界面的新现象
- 批准号:
1508433 - 财政年份:2015
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Scalable Thin-Film Fabrication for THz Optical Switching Devices in Vanadium Dioxide
二氧化钒中太赫兹光开关器件的可扩展薄膜制造
- 批准号:
1207507 - 财政年份:2012
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Control of ultrafast plasmonic structures by a metal-insulator transition
通过金属-绝缘体转变控制超快等离子体结构
- 批准号:
0801985 - 财政年份:2008
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
NIRT: Size Dependence of Phase Transitions in Nanocrystalline Oxides
NIRT:纳米晶氧化物中相变的尺寸依赖性
- 批准号:
0210785 - 财政年份:2002
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Nonlinear Optics in Green Tea and Cresyl Violet
绿茶和甲酚紫中的非线性光学
- 批准号:
9151916 - 财政年份:1991
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
U.S.-Japan Cooperative Research: Laser-Surface Interactionsat High Excitation Density
美日合作研究:高激发密度下的激光与表面相互作用
- 批准号:
8916097 - 财政年份:1990
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
阴离子聚合速度及副反应控制机理及其用于(甲基)丙烯酸酯室温以上常规聚合的研究
- 批准号:50933002
- 批准年份:2009
- 资助金额:200.0 万元
- 项目类别:重点项目
混沌控制和同步中几个问题
- 批准号:10372054
- 批准年份:2003
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Design hierarchical structure of mixed carrageenan gels for controlling mechanical properties
设计混合卡拉胶凝胶的分层结构以控制机械性能
- 批准号:
23K12678 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
An optical-genetic toolbox for monitoring and controlling diverse neuromodulatory circuits governing complex behaviors in primates
用于监测和控制灵长类动物复杂行为的多种神经调节回路的光遗传工具箱
- 批准号:
10650669 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
High-speed processing of low-loss optical waveguides by controlling the distribution of electron excitation using spatial light modulation
通过空间光调制控制电子激发分布来高速处理低损耗光波导
- 批准号:
22K20399 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Controlling Gold(I) Clustering at Pnictogen Center with N-Heterocyclic Carbene Ligands and Their Optical Properties
N-杂环卡宾配体控制金(I)在磷元素中心的团聚及其光学性质
- 批准号:
22K14691 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optogenetic manipulation of cortical feedback for controlling network coding and behavior
皮层反馈的光遗传学操作用于控制网络编码和行为
- 批准号:
10305623 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Optical Dissection of the Neural Circuitry Controlling Sensorimotor Gating
控制感觉运动门控的神经回路的光学解剖
- 批准号:
9895866 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Magnetic-electric-optical multi-functionality of nano-granular film by controlling the shape of magnetic nano-particle
通过控制磁性纳米颗粒的形状实现纳米颗粒薄膜的磁电光多功能
- 批准号:
19K21102 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Implement the firmware for controlling an optical polarity test instrument
实现用于控制光学极性测试仪器的固件
- 批准号:
533345-2018 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Investigation of the relationship between positional information and cell identity by controlling the nuclear dynamics using optical manipulation
通过使用光学操纵控制核动力学来研究位置信息和细胞身份之间的关系
- 批准号:
18K19331 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of basic science and technology for nitride semiconductor optical devices by controlling phonon functions
通过控制声子函数开发氮化物半导体光器件基础科学技术
- 批准号:
17H02772 - 财政年份:2017
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




