Hierarchical Solving of Symbolic Problems in Heterogeneous Geometry Environments

异构几何环境中符号问题的分层求解

基本信息

  • 批准号:
    0541402
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-02-15 至 2010-01-31
  • 项目状态:
    已结题

项目摘要

Hierarchical Solving of Symbolic Problems in Heterogeneous Geometry EnvironmentsPI: Elaine Cohen, Co-PI Richard F. RiesenfeldSchool of Computing, University of UtahAbstractMany important types of problems can be posed in a mathematical form, yet many real-world applications do not provide data in a form that can be used by traditional mathematical solvers. For example, medical models may be made of a 3D volume of point samples rather than the smooth models needed by the mathematical solvers. This research involves unifying these multiple, important methods of representing real-world data with the power of mathematical solvers by using methods based on robust geometry to solve problems. The investigators will use these results in applications for computer prototyping of mechanical systems and for computer-based surgical training. This research should be able to provide such tools as virtual calipers for imaged tumors or force-feedback interaction with complex medical data in the medical realm, and checking the fit of a CAD modeled mechanical part with a laser-scanned real part in the engineering realm.This research proposes to use hierarchical, geometric representations to compute solutions of symbolic problems, thereby expanding the applicability of symbolic solvers to areas where the data may not be in the form of equations. Examples of such applications include real-world applications in engineering and medicine. Because this approach relies on bounds to intrinsic geometric properties, rather than manipulating only the underlying representations directly, the approach also will allow a single application problem to have several different model representations mixed together. This arises in complex problems where some data may be analytical, some acquired, and some just rough approximations.
异构几何环境中符号问题的分层求解PI:Elaine Cohen,联合PI Richard F. Riesenfeld 犹他大学计算学院摘要许多重要类型的问题可以以数学形式提出,但许多实际应用程序并不以传统数学求解器可以使用的形式提供数据。例如,医学模型可能由 3D 体积的点样本组成,而不是数学求解器所需的平滑模型。这项研究涉及通过使用基于稳健几何的方法来解决问题,将这些表示现实世界数据的多种重要方法与数学求解器的能力相结合。研究人员将把这些结果用于机械系统的计算机原型设计和基于计算机的外科手术训练。这项研究应该能够提供诸如用于成像肿瘤的虚拟卡尺或在医学领域中与复杂医疗数据进行力反馈交互等工具,以及在工程领域中检查 CAD 建模机械零件与激光扫描真实零件的配合性。这项研究建议使用分层几何表示来计算符号问题的解决方案,从而将符号求解器的适用性扩展到数据可能不存在的领域。 方程的形式。 此类应用的示例包括工程和医学领域的实际应用。由于这种方法依赖于内在几何属性的界限,而不是仅直接操作底层表示,因此该方法还允许单个应用程序问题将多个不同的模型表示混合在一起。 这出现在复杂的问题中,其中一些数据可能是分析数据,一些数据可能是获得的,而一些数据只是粗略的近似值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elaine Cohen其他文献

The Proteins of Bovine Pancreatic Juice: II. RATES OF SYNTHESIS <em>IN VIVO</em> OF THE CATIONIC PROTEINS
  • DOI:
    10.1016/s0021-9258(18)70295-0
  • 发表时间:
    1959-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Patricia J. Keller;Elaine Cohen;Hans Neurath
  • 通讯作者:
    Hans Neurath
A Simulation-Based Mastery Learning Approach to Ventricular Assist Device Self-Management: The SimVAD Study
  • DOI:
    10.1016/j.cardfail.2018.07.028
  • 发表时间:
    2018-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Rebecca S. Harap;Kenzie A. Cameron;Gretchen Nonog;Lauren Schulze;Elaine Cohen;Kathleen L. Grady;Jane E. Wilcox;Kerry Shanklin;Clyde W. Yancy;Duc Thinh Pham;Jeffrey H. Barsuk
  • 通讯作者:
    Jeffrey H. Barsuk
AMINO ACID COMPOSITION OF α-CHYMOTRYPSINOGEN, INCLUDING ESTIMATION OF ASPARAGINE AND GLUTAMINE
  • DOI:
    10.1016/s0021-9258(18)70676-5
  • 发表时间:
    1957-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Philip E. Wilcox;Elaine Cohen;Wen Tan
  • 通讯作者:
    Wen Tan
The Proteins of Bovine Pancreatic Juice: III. INCORPORATION <em>IN VIVO</em> OF C<sup>14</sup>-ARGININE INTO TRYPSINOGEN, CHYMOTRYPSINOGEN A, AND RIBONUCLEASE
  • DOI:
    10.1016/s0021-9258(18)64186-9
  • 发表时间:
    1961-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Patricia J. Keller;Elaine Cohen;Hans Neurath
  • 通讯作者:
    Hans Neurath
Bovine Pancreatic Ribosomes: II. PURIFICATION AND SOME PROPERTIES
  • DOI:
    10.1016/s0021-9258(18)97718-5
  • 发表时间:
    1964-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Patricia J. Keller;Elaine Cohen;Roger D. Wade
  • 通讯作者:
    Roger D. Wade

Elaine Cohen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elaine Cohen', 18)}}的其他基金

HCC: CGV: Small: Semi-Regular Volumetric Parameterizations , Meshes, and Datafitting
HCC:CGV:小:半规则体积参数化、网格和数据拟合
  • 批准号:
    1117997
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR: A Unified Representation for Non-homogeneous Models Manifesting Surface, Volume, and Vector Attributes
ITR:表现表面、体积和矢量属性的非齐次模型的统一表示
  • 批准号:
    0218809
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/SY+PE+IM+AP COLLABORATIVE RESEARCH: Computer-linked Auto-Fabricated Models for Education in Molecular Biology
ITR/SY PE IM AP 合作研究:用于分子生物学教育的计算机连接自动制作模型
  • 批准号:
    0121533
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CISE Research Instrumentation: Layered Manufacturing Machine in Support of Rapid Prototyping and Unmanned Manufacturing
CISE 研究仪器:支持快速原型制造和无人制造的分层制造机器
  • 批准号:
    9529530
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Computer Graphics/Modeling and Expert Systems
计算机图形/建模和专家系统
  • 批准号:
    9352948
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Computer Graphics and Intelligent Systems
计算机图形学与智能系统
  • 批准号:
    9154977
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Toward a Unified Framework For Sensory Information Processing
建立传感信息处理的统一框架
  • 批准号:
    7680789
  • 财政年份:
    1977
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Solving the disability data puzzle to ensure progress towards equity
解决残疾数据难题,确保在实现公平方面取得进展
  • 批准号:
    IE230100561
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Early Career Industry Fellowships
Solving cashflow shortfalls in the construction industry using digital payments with embedded finance
使用数字支付和嵌入式金融解决建筑行业的现金流短缺
  • 批准号:
    10097800
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Solving key issues in wearable thermoelectrics for practical applications
解决可穿戴热电器件实际应用中的关键问题
  • 批准号:
    DE240100519
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
The Science of Solving Hard Subgraph Problems
解决困难子图问题的科学
  • 批准号:
    EP/X030032/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Investigating linguistic and cognitive abstractions for solving word problems in minds and machines
职业:研究语言和认知抽象以解决大脑和机器中的文字问题
  • 批准号:
    2339729
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Solving smoke taint: Overcoming the impacts of vineyard exposure to smoke
解决烟雾污染:克服葡萄园暴露于烟雾的影响
  • 批准号:
    LP210300715
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
  • 批准号:
    23K11226
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study for solving problems related to multimorbid conditions using an innovative QOL evaluation method
使用创新的生活质量评估方法解决与多病相关的问题的研究
  • 批准号:
    23H03127
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Waste Stream Valorisation: Solving sustainable chemical production
废物流增值:解决可持续化学品生产问题
  • 批准号:
    2881252
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了