SGER: Enhanced Heat Transfer Characteristics of Liquid Suspensions Containing Water-Filled Carbon Nanotubes

SGER:含有填充水的碳纳米管的液体悬浮液的增强传热特性

基本信息

  • 批准号:
    0543538
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-02-01 至 2007-07-31
  • 项目状态:
    已结题

项目摘要

Award Number: 0543538Title: SGER: Enhanced Heat Transfer Characteristics of Liquid Suspensions Containing Water-Filled Carbon NanotubesName: Constantine M. MegaridisInstitution: University of Illinois at ChicagoABSTRACTThis project will investigate the use of encapsulated high-pressure water dispersed as Phase Change Material (PCM) in a heat transfer liquid with the intent to simultaneously increase the effective heat capacity and thermal conductivity of the suspending parent fluid. This enhancement is pursued by dispersion of a new class of closed tubular nanovessels, which consist of multi-wall carbon nanotubes filled with water, mostly in its liquid state. Nanotubes as small as a few nanometers in diameter will be used with the ultimate goal to produce a super nanofluid, which features extremely high cooling capacity uniquely suited for microelectronic devices. Suspensions will be synthesized using large numbers of fluid-filled carbon nanotubes at variable concentrations in several traditional heat transfer fluids, i.e., water, oils and ethylene glycol. The impregnated liquids will be tested for viscosity, quantifying how this property changes with nanotube concentration. The effective heat capacity of the suspensions and its dependence on nanotube concentration will be measured via AC calorimetry. The effective thermal conductivity of the suspensions will be measured as a function of nanotube concentration and encapsulated water content via the transient hot-wire method. Finally, suspension stability will be monitored to create viable PCM fluids. Preliminary theoretical estimates have been made of the relative enhancement of a parent (bulk) fluid heat capacity as a function of the contained water/bulk fluid mass ratio. These estimates suggest that encapsulated-water mass loadings of only a few percent may enhance the heat capacity of the host liquid by up to 50% or even higher. The proposed work will be conducted in collaboration with Argonne National Laboratory where significant expertise on nanofluids exists. Intellectual merit: The proposed work combines the recently documented advantages of nanofluids (which contain solid nanoparticles) and PCM-fluids (which contain microcapsules encasing other fluids) to synthesize an environmentally friendly nanofluid with superior cooling properties. The problem is rich in terms of fluid transport, heat transfer and phase change phenomena in a closed nanoscale system (filled nanotube) and investigates how a large population of these nanovessels could affect the macroscopic heat transfer properties of conventional heat transfer liquids. The proposed work can be viewed as an attempt to create a composite fluid material with thermal-fluid properties tunable to heat transfer applications where exceedingly high heat fluxes render traditional fluids ineffective. Broader impacts: The research, if successful, is expected to have a significant impact in creating a new generation of nanofluids, which feature not only superior thermal conductivity but also extremely high specific heat, thus featuring cooling capacity meeting or exceeding the severe requirements of electronic microsystems with ultra-high heat fluxes. To this end, the work will generate a valuable science base and intellectual property of immediate use to industry. UIC personnel will interact with ANL researchers, while aspects of the research will be made accessible to undergraduate students and K-12 teachers through existing NSF-supported sites; the PI currently participates in a REU-NSF Site with 12 undergraduate students, as well as in a RET-NSF program with 9 K-12 teachers. These outreach/training activities will be conducted to highlight the relevance of the studied carbon nanotube systems in addressing real-life heat transfer technological challenges.
奖项编号:0543538题目:SGER:含水填充碳纳米管的液体悬浮液的强化传热特性名称: 康斯坦丁·M MegaridisInstitution: 伊利诺伊大学芝加哥分校摘要本项目将研究使用封装的高压水作为相变材料(PCM)分散在传热液体的意图,同时增加有效的热容量和导热系数的悬浮母流体。这种增强是通过分散一种新的封闭管状纳米管来实现的,这种纳米管由填充有水的多壁碳纳米管组成,主要是液态的。直径小至几纳米的纳米管将被用于生产超级纳米流体,其具有独特适合微电子设备的极高冷却能力。悬浮液将在几种传统的传热流体中以可变的浓度使用大量的流体填充的碳纳米管来合成,即,水、油和乙二醇。将测试浸渍的液体的粘度,量化该性质如何随纳米管浓度变化。悬浮液的有效热容量及其对纳米管浓度的依赖性将通过AC量热法测量。悬浮液的有效导热系数将通过瞬态热线法测量为纳米管浓度和封装水含量的函数。最后,将监测悬浮液稳定性以产生可行的PCM流体。初步的理论估计已作出的相对增强的母(散装)流体的热容量作为所包含的水/散装流体的质量比的函数。这些估计表明,仅百分之几的蒸馏水质量负载可以将主体液体的热容量提高高达50%或甚至更高。拟议的工作将与阿贡国家实验室合作进行,该实验室在纳米流体方面具有重要的专业知识。智力优点:拟议的工作结合了最近记录的纳米流体(其中包含固体纳米粒子)和PCM流体(其中包含包裹其他流体的微胶囊)的优点,以合成具有上级冷却性能的环境友好的纳米流体。这个问题是丰富的流体输送,传热和相变现象在一个封闭的纳米系统(填充纳米管),并研究如何大量的这些nanovesses可能会影响宏观传热性能的常规传热液体。所提出的工作可以被看作是一种尝试,以创建一个复合流体材料的热流体性能可调的热传递应用,其中非常高的热通量使传统的流体无效。更广泛的影响:这项研究如果成功,预计将对创造新一代纳米流体产生重大影响,这些纳米流体不仅具有上级导热性,而且具有极高的比热,因此具有满足或超过超高热通量电子微系统严格要求的冷却能力。为此,这项工作将产生一个宝贵的科学基础和知识产权,可立即用于工业。UIC人员将与ANL研究人员互动,而研究的各个方面将通过现有的NSF支持的网站提供给本科生和K-12教师; PI目前参与了REU-NSF网站,有12名本科生,以及RET-NSF计划,有9名K-12教师。将开展这些推广/培训活动,以突出所研究的碳纳米管系统在解决现实生活中的传热技术挑战方面的相关性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Constantine Megaridis其他文献

Constantine Megaridis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Constantine Megaridis', 18)}}的其他基金

EAGER: Condensation-based Capture and Quantification of Microdroplet-transmitted Viruses
EAGER:基于冷凝的微滴传播病毒的捕获和定量
  • 批准号:
    2041918
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
A bottom-up framework for the nanoscale origins of ice formation and adhesion on structured surfaces
冰形成和结构化表面粘附的纳米级起源的自下而上框架
  • 批准号:
    1805753
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Exploratory Natural Models for Fog Harvesting
EAGER:雾气收集的探索性自然模型
  • 批准号:
    1701519
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: A Micropatterned Wettability Approach for Superior Boiling Heat Transfer Performance
合作研究:一种微图案润湿性方法,可实现卓越的沸腾传热性能
  • 批准号:
    1236030
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigation of icephobic behavior of surfaces with tunable properties
研究具有可调特性的表面的疏冰行为
  • 批准号:
    1066426
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Soot Morphology in Flickering Laminar Diffusion Flames
闪烁层流扩散火焰中的烟灰形态
  • 批准号:
    9420068
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research Initiation Award: Metal Additive Effects on Soot Morphology in Laminar Diffusion Flames
研究启动奖:金属添加剂对层流扩散火焰中烟灰形态的影响
  • 批准号:
    9109166
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

MicroPHE: Flow boiling of zeotropic mixtures in plate heat exchanger with microstructure-enhanced surfaces
MicroPHE:具有微结构增强表面的板式换热器中非共沸混合物的流动沸腾
  • 批准号:
    EP/Y022149/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Improvement in cooling performance of adsorption chiller by using high heat transfer composite adsorbent with enhanced water vapor adsorption capacity
采用增强水蒸气吸附能力的高传热复合吸附剂改善吸附式制冷机冷却性能
  • 批准号:
    23H01743
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SBIR Phase I: Low-Cost, Vision-Enhanced, High-Efficiency Heat Cable Control System
SBIR 第一阶段:低成本、视觉增强、高效热电缆控制系统
  • 批准号:
    2224907
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
GOALI: 3D-printed biomimetic structures for enhanced boiling heat transfer and thermal management
GOALI:3D 打印仿生结构可增强沸腾传热和热管理
  • 批准号:
    2149489
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Production of molecular chaperone-enhanced bovine embryos by utilizing heat-independent HSP70 inducer
利用不依赖热的 HSP70 诱导剂生产分子伴侣增强牛胚胎
  • 批准号:
    22K19233
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
SBIR Phase II: Innovative Advection-Enhanced Geothermal Heat Pump Fieldloop Demonstration
SBIR 第二阶段:创新平流增强型地热热泵现场循环演示
  • 批准号:
    2127107
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Characterization and Optimization of Heat Transfer from GRIP Metal Enhanced Surfaces
GRIP 金属增强表面传热的表征和优化
  • 批准号:
    552123-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Characterization and Optimization of Heat Transfer from GRIP Metal Enhanced Surfaces
GRIP 金属增强表面传热的表征和优化
  • 批准号:
    552123-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
PFI-TT: Enhanced Electronic Cooling via 3D Printing from Additive Laser Fabrication of Heat Removal Devices
PFI-TT:通过激光增材制造除热装置的 3D 打印增强电子冷却
  • 批准号:
    1941181
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Design and Evaluation of Compact Nano-Enhanced Latent Heat Thermal Energy Storage for domestic heating radiators
家用采暖散热器紧凑型纳米增强潜热热能存储的设计与评估
  • 批准号:
    NE/V009923/1
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了