Investigation of icephobic behavior of surfaces with tunable properties
研究具有可调特性的表面的疏冰行为
基本信息
- 批准号:1066426
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1066426:Constantine MegaridisThe impact and freezing of water droplets on solid surfaces is a problem not only of intense fundamental interest but also a practical one, posing severe challenges to the uninterrupted operation of equipment and machinery exposed to the environment. Over the past few years, surfaces that retard ice formation (a.k.a. icephobic surfaces) have attracted increased attention, with superhydrophobic surfaces suggested as a possible solution. Despite some limited work in this area, the impact of droplets on surfaces, which is a common mechanism of ice-formation in the environment, lacks a thorough fundamental understanding. Preliminary work on delayed freezing of inkjet generated supercooled water microdroplets accumulating one-after-the-other on various surfaces -including superhydrophobic coatings- revealed that the effect of surface roughness in this problem might be equally as important as surface energy (i.e. wettability).The work will examine the impact and freezing of supercooled-water droplets on surfaces with controlled micro-to-nanoscale texture, prescribed wettability (ranging from hydrophobic to superhydrophobic) and self-cleaning ability. Freezing delays will be quantified by means of high spatial and temporal resolution instrumentation; the measured freezing delays will be used to evaluate the icephobic potential of each surface. The effects of wettability (contact angle), self-cleaning ability (droplet roll-off tilt angle), droplet impact parameters (diameter, velocity, incidence angle) and droplet/surface temperature difference on droplet bounce, freezing and ice/frost accumulation will be analyzed. In addition to the above passive means of delaying ice formation, localized heat input will be examined as an active method to reduce ice formation/build-up by using superhydrophobic, electrically-conducting, nanoparticle-filled, polymer-based, composite coatings developed in the PI?s laboratory. These novel coatings feature well-controlled micro/nanotexture, tunable wettability (contact angle), self-cleaning ability (contact angle hysteresis), and favorable electrical properties. Intellectual Merit: The work is believed to be highly transformative. It addresses a fundamental problem that has not yet been investigated thoroughly, although it is of high relevance to icephobicity as it pertains to practical applications. The proposed study takes advantage of recent developments on super-repellent polymer composite coatings that feature well-controlled micro/nanotexture, tunable wettability, self-cleaning ability and electrical properties, all necessary tools for the proposed investigation. The problem involves rich phenomena in fluid physics and heat transport, non-equilibrium phase change, and super-repellent multifunctional materials.Broader Impacts: The proposed program will enrich the science base for icephobic surface design, and if successful, has the potential to guide development of icephobic surfaces with superior properties. The research will advance discovery and fundamental understanding, while promoting teaching, training, and learning by means of a parallel education/outreach component. The PI will partner with a local minority-serving high school to expose these students and their teachers to the exciting world of nanoscience by involving them in cutting-edge research pursued in a university laboratory. Graduate and undergraduate students who will be involved in the research will serve as mentors to the high school students.
1066426:Constantine Megaridis水滴在固体表面上的冲击和冻结不仅是一个具有强烈基本兴趣的问题,而且也是一个实际问题,对暴露在环境中的设备和机械的不间断运行提出了严峻的挑战。在过去的几年里,阻碍冰形成的表面(也就是说,疏冰表面)已经吸引了越来越多的关注,超疏水表面被认为是一种可能的解决方案。尽管在这一领域开展了一些有限的工作,但液滴对表面的影响是环境中结冰的常见机制,缺乏彻底的基本理解。对喷墨产生的过冷水微滴在各种表面(包括超疏水涂层)上一个接一个地积累的延迟冻结的初步研究表明,在这个问题中,表面粗糙度的影响可能与表面能一样重要。(即润湿性)。这项工作将研究过冷水滴在具有受控微米到纳米级纹理的表面上的影响和冻结,规定的润湿性(从疏水到超疏水)和自清洁能力。冻结延迟将通过高空间和时间分辨率的仪器进行量化;测得的冻结延迟将用于评估每个表面的憎冰潜力。将分析润湿性(接触角)、自清洁能力(液滴滚落倾角)、液滴撞击参数(直径、速度、入射角)和液滴/表面温差对液滴反弹、冻结和冰/霜累积的影响。除了上述被动手段延迟冰的形成,局部热输入将被检查作为一种主动的方法,以减少冰的形成/积累,通过使用超疏水性,导电,纳米粒子填充,聚合物为基础的,复合涂层开发的PI?的实验室。这些新型涂层具有良好控制的微/纳米织构,可调润湿性(接触角),自清洁能力(接触角滞后),和良好的电性能。 智力优点:这项工作被认为是高度变革性的。它解决了一个尚未被彻底研究的基本问题,尽管它与实际应用有关,但与疏冰性高度相关。拟议的研究利用了最近开发的超排斥性聚合物复合涂层,具有良好的控制微/纳米纹理,可调润湿性,自清洁能力和电气性能,所有必要的工具,拟议的调查。该问题涉及丰富的现象,在流体物理和热传输,非平衡相变,和超排斥多功能materials.Broader的影响:拟议的计划将丰富的科学基础,憎冰表面设计,如果成功的话,有可能指导发展的憎冰表面的上级性能。该研究将推进发现和基本理解,同时通过平行教育/外联部分促进教学,培训和学习。PI将与当地一所少数民族高中合作,让这些学生和他们的老师接触到令人兴奋的纳米科学世界,让他们参与大学实验室的前沿研究。参与研究的研究生和本科生将担任高中生的导师。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Constantine Megaridis其他文献
Constantine Megaridis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Constantine Megaridis', 18)}}的其他基金
EAGER: Condensation-based Capture and Quantification of Microdroplet-transmitted Viruses
EAGER:基于冷凝的微滴传播病毒的捕获和定量
- 批准号:
2041918 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
A bottom-up framework for the nanoscale origins of ice formation and adhesion on structured surfaces
冰形成和结构化表面粘附的纳米级起源的自下而上框架
- 批准号:
1805753 - 财政年份:2018
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
EAGER: Exploratory Natural Models for Fog Harvesting
EAGER:雾气收集的探索性自然模型
- 批准号:
1701519 - 财政年份:2017
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Collaborative Research: A Micropatterned Wettability Approach for Superior Boiling Heat Transfer Performance
合作研究:一种微图案润湿性方法,可实现卓越的沸腾传热性能
- 批准号:
1236030 - 财政年份:2012
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
SGER: Enhanced Heat Transfer Characteristics of Liquid Suspensions Containing Water-Filled Carbon Nanotubes
SGER:含有填充水的碳纳米管的液体悬浮液的增强传热特性
- 批准号:
0543538 - 财政年份:2006
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Soot Morphology in Flickering Laminar Diffusion Flames
闪烁层流扩散火焰中的烟灰形态
- 批准号:
9420068 - 财政年份:1994
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Research Initiation Award: Metal Additive Effects on Soot Morphology in Laminar Diffusion Flames
研究启动奖:金属添加剂对层流扩散火焰中烟灰形态的影响
- 批准号:
9109166 - 财政年份:1991
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
相似海外基金
Development and Feasibility Testing of novel icephobic Surface Technology for Mitigating Safety Risks of Commercial Fishing Vessels
用于降低商业渔船安全风险的新型疏冰表面技术的开发和可行性测试
- 批准号:
10693635 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Development of new hybrid icephobic/superhydrophobic surfaces using encapsulated phase change materials
使用封装相变材料开发新型混合疏冰/超疏水表面
- 批准号:
RGPIN-2020-05118 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Development of an easy-to-clean and icephobic polyurethane based coating for aluminium structures
开发用于铝结构的易于清洁且防冰的聚氨酯涂料
- 批准号:
543844-2019 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Collaborative Research and Development Grants
Superhydrophobic and icephobic materials for biomedical engineering applications
用于生物医学工程应用的超疏水和疏冰材料
- 批准号:
580586-2022 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Alliance Grants
Development of new hybrid icephobic/superhydrophobic surfaces using encapsulated phase change materials
使用封装相变材料开发新型混合疏冰/超疏水表面
- 批准号:
RGPIN-2020-05118 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Hybrid piezoelectric films and smart icephobic coatings with acoustic wave strategies for active ice protection
混合压电薄膜和智能疏冰涂层,采用声波策略进行主动冰防护
- 批准号:
2430814 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Studentship
Development of new hybrid icephobic/superhydrophobic surfaces using encapsulated phase change materials
使用封装相变材料开发新型混合疏冰/超疏水表面
- 批准号:
DGECR-2020-00472 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Discovery Launch Supplement
Development of new hybrid icephobic/superhydrophobic surfaces using encapsulated phase change materials
使用封装相变材料开发新型混合疏冰/超疏水表面
- 批准号:
RGPIN-2020-05118 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Development of an easy-to-clean and icephobic polyurethane based coating for aluminium structures
开发用于铝结构的易于清洁且防冰的聚氨酯涂料
- 批准号:
543844-2019 - 财政年份:2020
- 资助金额:
$ 32万 - 项目类别:
Collaborative Research and Development Grants
Development of an easy-to-clean and icephobic polyurethane based coating for aluminium structures
开发用于铝结构的易于清洁且防冰的聚氨酯涂料
- 批准号:
543844-2019 - 财政年份:2019
- 资助金额:
$ 32万 - 项目类别:
Collaborative Research and Development Grants