Eliminating Racial Bias in Police Officer Decisions to Shoot: Implications for the Control of Automatic Bias

消除警官开枪决定中的种族偏见:对控制自动偏见的影响

基本信息

  • 批准号:
    0544598
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-15 至 2011-02-28
  • 项目状态:
    已结题

项目摘要

In today's world, police officers face difficult split-second decisions that require them to determine whether criminal suspects are armed and constitute an imminent threat. When suspects are members of ethnic minorities there may be a greater tendency for police officers to believe that they are armed. Examples of this include the shooting of an unarmed young Black man by police officers who mistook the cellular phone that he was carrying for a weapon. When tragedies like this occur, the question arises as to whether police officers' split-second decisions to shoot may be influenced by the suspect's race. There is mounting evidence that police officers are more likely to mistakenly shoot unarmed Black suspects compared to unarmed White suspects. This research examines the efficacy of a training program to eliminate this type of racial bias in responses to criminal suspects. The goals of this research are to: 1) Develop a deeper understanding of how to eliminate racial bias in police responding; 2) Identify the behaviors and responses that can be influenced by training on a bias reduction simulation; and 3) Explore whether there are factors that affect either the degree of racial bias initially present or the efficacy of a training simulation. A series of studies employing computer simulations is proposed to programmatically examine each of these issues. In this work, law enforcement personnel participate, and complete a computer simulation where they must decide whether to shoot at suspects who appear on screen. Here, the race of suspect is unrelated to weapon possession such that attending to race and being influenced by race impairs performance on the simulation. Initial evidence indicates that this approach is effective in eliminating racial biases in responses to the simulation even 24 hours after training.
在当今世界,警察面临着艰难的瞬间决定,需要他们确定犯罪嫌疑人是否携带武器并构成迫在眉睫的威胁。 当嫌疑人是少数民族成员时,警官可能更倾向于认为他们持有武器。 这方面的例子包括一名手无寸铁的年轻黑人男子被警察误认为他携带的手机是武器而开枪射击。 当这样的悲剧发生时,问题就出现了,警察在瞬间开枪的决定是否会受到嫌疑人种族的影响。越来越多的证据表明,与手无寸铁的白色嫌疑人相比,警察更有可能错误地射杀手无寸铁的黑人嫌疑人。 本研究探讨了培训计划的有效性,以消除这种类型的种族偏见,在应对犯罪嫌疑人。 本研究的目标是:1)发展如何消除种族偏见在警察反应的更深入的理解; 2)确定的行为和反应,可以通过培训的偏见减少模拟的影响;和3)探索是否有影响种族偏见的程度最初存在或培训模拟的功效的因素。 一系列的研究,采用计算机模拟提出了以编程方式检查这些问题。 在这项工作中,执法人员参与,并完成一个计算机模拟,他们必须决定是否向屏幕上出现的嫌疑人开枪。 在这里,嫌疑人的种族与武器拥有无关,因此关注种族并受到种族的影响会损害模拟的表现。 初步证据表明,即使在训练后24小时,这种方法也能有效消除对模拟的种族偏见。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elizabeth Ashby Plant其他文献

Elizabeth Ashby Plant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elizabeth Ashby Plant', 18)}}的其他基金

GSE/RES: Pedagogical agents as social models: Challenging gender-related stereotypes of engineering
GSE/RES:作为社会模型的教学主体:挑战与性别相关的工程学刻板印象
  • 批准号:
    0429647
  • 财政年份:
    2004
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似海外基金

Understanding and Reducing Racial Bias in Cardiovascular Risk Prediction Using Novel AI Methods
使用新型人工智能方法理解和减少心血管风险预测中的种族偏见
  • 批准号:
    MR/Y000803/1
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Fellowship
Implicit racial bias in pediatric emergency medicine: A foundational investigation of physician behaviors
儿科急诊医学中的隐性种族偏见:对医生行为的基础调查
  • 批准号:
    10722681
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Novel Pigment Sensing Pulse Oximeter Technology for Mitigating Racial Bias in Oxygen Saturation Measurements
新型颜料感应脉搏血氧仪技术可减少血氧饱和度测量中的种族偏见
  • 批准号:
    10599746
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Assessing Racial Bias in Pulmonary Medicine from the Interpretation of Pulmonary Function Tests
从肺功能测试的解释评估肺医学的种族偏见
  • 批准号:
    10677310
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
Explaining racial and ethnic Alzheimer’s disease disparities with joint estimation of life course social inequities and measurement bias in verbal memory assessment
通过生命历程社会不平等和言语记忆评估中测量偏差的联合估计来解释种族和民族阿尔茨海默病差异
  • 批准号:
    10728325
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Racial Bias in Risk Adjustment Algorithms and Implications for Racial Health Disparities: Evidence from Dual-Eligible Medicare/Medicaid Long-term Care Patients in New York
风险调整算法中的种族偏见以及对种族健康差异的影响:来自纽约双重资格医疗保险/医疗补助长期护理患者的证据
  • 批准号:
    10624402
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
POEm: Pulse Oximetry from the Ear-druM; a robust measurement site eliminating a racial bias
POEm:耳鼓脉搏血氧测定法;
  • 批准号:
    10027966
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Collaborative R&D
Explaining racial and ethnic Alzheimer’s disease disparities with joint estimation of life course social inequities and measurement bias in verbal memory assessment
通过生命历程社会不平等和言语记忆评估中的测量偏差的联合估计来解释种族和民族阿尔茨海默病差异
  • 批准号:
    10387926
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
Racial Bias in Risk Adjustment Algorithms and Implications for Racial Health Disparities: Evidence from Dual-Eligible Medicare/Medicaid Long-term Care Patients in New York
风险调整算法中的种族偏见以及对种族健康差异的影响:来自纽约双重资格医疗保险/医疗补助长期护理患者的证据
  • 批准号:
    10474727
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Combatting Disinformation and Racial Bias: A Deep-Learning-Assisted Investigation of Temporal Dynamics of Disinformation
EAGER:DCL:SaTC:实现跨学科合作:打击虚假信息和种族偏见:虚假信息时间动态的深度学习辅助调查
  • 批准号:
    2210137
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了