CAREER: Algorithms for Optimization Problems in Wireless Networks

职业:无线网络优化问题的算法

基本信息

项目摘要

For almost all the applications of wireless networks, the central optimization goal is to maximize network lifetime. Since each node in wireless networks is battery powered, energy conservation at each node is the primary concern that will greatly affect network lifetime. For the optimization goal of maximizing network lifetime in wireless networks, this project will integrate research and education to investigate some novel approaches for the coverage problems and the dominating set problems in wireless networks. Furthermore, the relationships between the solutions to the coverage problems and the solutions to the dominating set problems will be studied. The research work will focus on: designing new distributed and localized approximations for the coverage problems, developing new methods of constructing stable backbones in mobile or static wireless networks with the consideration of maintenance, integrating the proposed approaches for the coverage problems and the dominating set problems into coherent schemes so that new models can be derived to solve both the coverage problems and the dominating set problems. The research will be conducted from both theoretical and simulation aspects. The research component of this project will have a strong impact on both theoretical and practical aspects of optimization theory as well as wireless networks. It will accelerate the realization of the optimization goal in wireless networks. The education component of this project is a starting point to integrate research and education for the purpose of attracting both undergraduate and graduate students to the areas of optimization theory and wireless networks. The approaches proposed in this project and the findings as a result will be used as additional teaching materials to excite the students and to attract more potential students to conduct research in these areas.
对于几乎所有的无线网络应用,中心优化目标都是最大化网络生存期。由于无线网络中的每个节点都是由电池供电的,因此每个节点的节能是影响网络寿命的主要问题。本项目将结合科研与教学,以最大限度地提高无线网络的网络寿命为优化目标,探索无线网络覆盖问题和支配集问题的新方法。进一步研究了覆盖问题的解与控制集问题的解之间的关系。研究工作将集中在:为覆盖问题设计新的分布式和局部近似,开发考虑维护的移动或静态无线网络中构建稳定主干网的新方法,将所提出的覆盖问题和控制集问题的方法整合到连贯的方案中,从而推导出解决覆盖问题和控制集问题的新模型。研究将从理论和仿真两个方面进行。该项目的研究部分将对优化理论和无线网络的理论和实践方面产生重大影响。它将加速无线网络优化目标的实现。该项目的教育部分是将研究和教育结合起来的起点,目的是吸引本科生和研究生进入优化理论和无线网络领域。在这个项目中提出的方法和结果将被用作额外的教材,以激发学生和吸引更多潜在的学生在这些领域进行研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingshu Li其他文献

Data Aggregation Scheduling in Battery-Free Wireless Sensor Networks
无电池无线传感器网络中的数据聚合调度
  • DOI:
    10.1109/tmc.2020.3035671
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Tongxin Zhu;Jianzhong Li;Hong Gao;Yingshu Li
  • 通讯作者:
    Yingshu Li
Near-infrared-II-activatable self-assembled Manganese Porphyrin-Gold heterostructures for photoacoustic imaging-guided sonodynamic-augmented photothermal/photodynamic therapy,
  • DOI:
    https://doi.org/10.1021/acsnano.3c09011
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Peijing Xu;ChangchunWen;CunjiGao;Huihui Liu;Yingshu Li;Xiaolu Guo;Xing-Can Shen;HongLiang
  • 通讯作者:
    HongLiang
A combination of wireless multicast advantage and hitch-hiking
无线组播优势与搭便车的结合
  • DOI:
    10.1109/lcomm.2005.1576580
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Thai;Yingshu Li;D. Du
  • 通讯作者:
    D. Du
Involvement of histone hypoacetylation in INH-induced rat liver injury.
组蛋白低乙酰化参与 INH 诱导的大鼠肝损伤。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Lingyan Zhu;Qi Ren;Yuhong Li;Yiyang Zhang;Jinfeng Li;Yingshu Li;Zhe Shi;F. Feng
  • 通讯作者:
    F. Feng
nbsp;Computing an effective decision making group of a society using social network analysis
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Donghyun Kim;Deying Li;Omid Asgari;Yingshu Li
  • 通讯作者:
    Yingshu Li

Yingshu Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingshu Li', 18)}}的其他基金

Collaborative Research: IUSE: EDU: Innovative and Inclusive Undergraduate XR Engineering Education to Cultivate Future Metaverse Workforce
合作研究:IUSE:EDU:创新和包容的本科 XR 工程教育,培养未来的元宇宙劳动力
  • 批准号:
    2315596
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Acquisition, Collection and Computation of Dynamic Big Sensory Data in Smart Cities
BIGDATA:F:协作研究:智慧城市动态大传感数据的采集、收集和计算
  • 批准号:
    1741277
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
EAGER: Evaluating the feasibility of Self-Protecting Heterogeneous Wireless Sensor Networks
EAGER:评估自我保护异构无线传感器网络的可行性
  • 批准号:
    1052769
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SGER: A New Framework for Energy-Efficient and Realtime Data Delivery in Heterogeneous Wireless Sensor Networks
SGER:异构无线传感器网络中节能和实时数据传输的新框架
  • 批准号:
    0844829
  • 财政年份:
    2008
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: AF: Fast Algorithms for Riemannian Optimization
职业:AF:黎曼优化的快速算法
  • 批准号:
    2410328
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: AF: Fast Algorithms for Riemannian Optimization
职业:AF:黎曼优化的快速算法
  • 批准号:
    2239228
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Learning Optimization Algorithms from Data: Interpretability, Reliability, and Scalability
职业:从数据中学习优化算法:可解释性、可靠性和可扩展性
  • 批准号:
    2145346
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Favorable Optimization under Distributional Distortions: Frameworks, Algorithms, and Applications
职业:分布扭曲下的有利优化:框架、算法和应用
  • 批准号:
    2246414
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: From Shallow to Deep Representation Learning: Global Nonconvex Optimization Theories and Efficient Algorithms
职业:从浅层到深层表示学习:全局非凸优化理论和高效算法
  • 批准号:
    2143904
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Mathematical Models and Algorithms for Decentralized Optimization in Complex Multi-agent Networks
职业:推进复杂多智能体网络中分散优化的数学模型和算法
  • 批准号:
    2323159
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Automated Analysis and Design of Optimization Algorithms
职业:优化算法的自动分析和设计
  • 批准号:
    2136945
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Favorable Optimization under Distributional Distortions: Frameworks, Algorithms, and Applications
职业:分布扭曲下的有利优化:框架、算法和应用
  • 批准号:
    2046426
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了