CAREER: From Shallow to Deep Representation Learning: Global Nonconvex Optimization Theories and Efficient Algorithms
职业:从浅层到深层表示学习:全局非凸优化理论和高效算法
基本信息
- 批准号:2143904
- 负责人:
- 金额:$ 63.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Machine learning is by now transforming many fields of science and engineering. However, as data sets continuously increase in both volume and dimensions, the performance of modern machine-learning methods has become critically dependent on the data representations being used. In the past decade, although many deep-representation learning methods have enjoyed remarkable empirical success, the underlying principles behind this success have largely remained a mystery, a situation which has hindered further development and broader adoption. A major difficulty stems from the nonlinearities of the data representation models that often lead to complicated and challenging non-convex optimization problems. This project aims to advance the theoretical foundations from shallow-representation learning (e.g., learning sparsifying dictionaries) to deep-representation learning (e.g., learning deep neural networks) by exploiting the geometric properties of non-convex optimization landscapes and the intrinsic structures of the data. The impact of this research will take the form of new guiding principles for better model/architecture design, optimization and robustness in both supervised and unsupervised scenarios. The research program will be integrated with education activities that include training a diverse workforce in STEM at both undergraduate and graduate levels, designing machine learning modules appropriate for dissemination to K-12 students, and promoting women and underrepresented students through various outreach activities. This project seeks to bridge the gap between the theory and practice of representation learning by developing a principled and unified mathematical framework based on recent developments in global non-convex optimization theory. The mathematical foundations for both shallow and deep representation learning will be advanced by leveraging both the geometric properties of the corresponding non-convex optimization landscapes, and the low-dimensional structures of high-dimensional data. The resulting geometric insights will clarify the kind of representations can be learned through optimization, and will guide the development of efficient and globally convergent training algorithms. The proposed framework will be applied to the study of a wide spectrum of representation learning problems in supervised, self-supervised and unsupervised learning; correspondingly, their generalization and robustness will be investigated by understanding the learned representations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)全部或部分资助的。机器学习现在可以改变科学和工程的许多领域。但是,随着数据集在数量和尺寸的不断增加时,现代机器学习方法的性能已关键取决于所使用的数据表示。在过去的十年中,尽管许多深入代表性学习方法取得了杰出的经验成功,但这种成功的基本原则在很大程度上仍然是一个谜,这种情况阻碍了进一步的发展和更广泛的采用。一个主要的困难源于数据表示模型的非线性,这些模型通常会导致复杂且具有挑战性的非凸优化问题。该项目旨在通过利用非convex优化景观和数据的内在结构的几何特性,从浅层代表学习(例如,学习稀疏字典)从浅层代表学习(例如学习稀疏字典)转化为深层代表学习(例如学习深神经网络),从而将非代表性的基础从浅层代表学习(例如学习稀疏字典)推进了理论基础。这项研究的影响将采用新的指导原则的形式,以在受监督和无监督的情况下更好地模型/建筑设计,优化和鲁棒性。该研究计划将与教育活动集成,其中包括在本科和研究生级别培训STEM的多样化劳动力,设计适合于K-12学生传播的机器学习模块,以及通过各种外展活动促进女性和代表性不足的学生。该项目试图通过基于全球非凸优化理论的最新发展来开发一个原则和统一的数学框架来弥合代表学习理论和实践之间的差距。通过利用相应的非凸优化景观的几何特性和高维数据的低维结构,将提出浅层和深度表示学习的数学基础。由此产生的几何见解将阐明可以通过优化学习的表示形式,并将指导有效且全球收敛的训练算法的发展。所提出的框架将应用于对受监督,自学和无监督学习的各种代表性学习问题的研究;相应地,将通过理解学习的表示形式来调查它们的概括和鲁棒性。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Miniaturizing a Chip-Scale Spectrometer Using Local Strain Engineering and Total-Variation Regularized Reconstruction
- DOI:10.1021/acs.nanolett.2c02654
- 发表时间:2022-10-12
- 期刊:
- 影响因子:10.8
- 作者:Sarwar,Tuba;Yaras,Can;Ku,Pei-Cheng
- 通讯作者:Ku,Pei-Cheng
Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold
- DOI:10.48550/arxiv.2209.09211
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Can Yaras;Peng Wang;Zhihui Zhu;L. Balzano;Qing Qu
- 通讯作者:Can Yaras;Peng Wang;Zhihui Zhu;L. Balzano;Qing Qu
Hidden State Variability of Pretrained Language Models Can Guide Computation Reduction for Transfer Learning
- DOI:10.48550/arxiv.2210.10041
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Shuo Xie;Jiahao Qiu;Ankita Pasad;Li Du;Qing Qu;Hongyuan Mei
- 通讯作者:Shuo Xie;Jiahao Qiu;Ankita Pasad;Li Du;Qing Qu;Hongyuan Mei
On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features
- DOI:10.48550/arxiv.2203.01238
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Jinxin Zhou-;Xiao Li;Tian Ding;Chong You;Qing Qu;Zhihui Zhu
- 通讯作者:Jinxin Zhou-;Xiao Li;Tian Ding;Chong You;Qing Qu;Zhihui Zhu
Are All Losses Created Equal: A Neural Collapse Perspective
- DOI:10.48550/arxiv.2210.02192
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Jinxin Zhou-;Chong You;Xiao Li;Kangning Liu;Sheng Liu;Qing Qu;Zhihui Zhu
- 通讯作者:Jinxin Zhou-;Chong You;Xiao Li;Kangning Liu;Sheng Liu;Qing Qu;Zhihui Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Qu其他文献
Exact and Efficient Multi-Channel Sparse Blind Deconvolution — A Nonconvex Approach
精确高效的多通道稀疏盲反卷积——一种非凸方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Qing Qu;Xiao Li;Zhihui Zhu - 通讯作者:
Zhihui Zhu
Responsible Leadership with Chinese Characteristics
中国特色的责任领导
- DOI:
10.1017/mor.2023.38 - 发表时间:
2024 - 期刊:
- 影响因子:2.9
- 作者:
Qing Qu;Pingping Fu;Yu Tu;Masoud Shadnam - 通讯作者:
Masoud Shadnam
Nitrogen dozen carbon quantum dots as one dual function sensing platform for electrochemical and fluorescent detecting ascorbic acid
氮打碳量子点作为电化学和荧光检测抗坏血酸的双功能传感平台
- DOI:
10.1007/s11051-019-4741-9 - 发表时间:
2020 - 期刊:
- 影响因子:2.5
- 作者:
Xin Zhou;Qing Qu;Lin Wang;Lei Li;Shunling Li;Ke Xia - 通讯作者:
Ke Xia
Compounds inhibitory nematophagous fungi produced by Bacillus sp. Strain H6 isolated from soil.
抑制芽孢杆菌产生的食线虫真菌的化合物。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:1.8
- 作者:
Qing Qu;Ke-Qin Zhang;Lei Li;Minghe Mo - 通讯作者:
Minghe Mo
ThetypeIVsecretionsystema ¡ ectstheexpressionofOmp 25 / Omp 31 and theoutermembraneproperties ofBrucellamelitensis
IV型分泌系统a ¡
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Yufei Wang;Zeliang Chen;Feng Qiao;Z. Zhong;Jie Xu;Zhoujia Wang;Xinying Du;Qing Qu;Jing Yuan;Leili Jia;Hongbin Song;Yansong Sun;Liuyu Huang - 通讯作者:
Liuyu Huang
Qing Qu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Qu', 18)}}的其他基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Foundations of Robust Deep Learning via Data Geometry and Dyadic Structure
合作研究:CIF:媒介:通过数据几何和二元结构实现稳健深度学习的基础
- 批准号:
2212326 - 财政年份:2022
- 资助金额:
$ 63.33万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
- 批准号:
2212066 - 财政年份:2022
- 资助金额:
$ 63.33万 - 项目类别:
Continuing Grant
相似国自然基金
华北地区浅对流向深对流云转换过程的多源观测和机理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
斑岩成矿系统浅部岩浆储库的关键控矿机制—来自西藏甲玛3000米科学深钻的矿物学证据
- 批准号:42272093
- 批准年份:2022
- 资助金额:57 万元
- 项目类别:面上项目
华北地区浅对流向深对流云转换过程的多源观测和机理研究
- 批准号:42275091
- 批准年份:2022
- 资助金额:55.00 万元
- 项目类别:面上项目
深/浅根型覆盖作物混种提升香蕉园土壤有机碳的生物学机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
PbX (X=Te, Se)基化合物的深、浅能级杂质调控与热电性能
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 63.33万 - 项目类别:
Continuing Grant
特徴的後続波形のモデリングから解明する内陸地殻浅部・深部低周波地震の発生機構
通过特征后续波形建模阐明浅层和深部内陆地壳低频地震的发生机制
- 批准号:
24K07164 - 财政年份:2024
- 资助金额:
$ 63.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
SCH: Shallow and Deep Personalization for Hearing Aids
SCH:助听器的浅度和深度个性化
- 批准号:
2306331 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Mechanisms and rate of anthropogenic CO2 uptake in Canadian coastal waters and the response of shallow and deep-ocean carbonate sediments to ocean acidification.
加拿大沿海水域人为二氧化碳吸收的机制和速率以及浅海和深海碳酸盐沉积物对海洋酸化的响应。
- 批准号:
RGPIN-2018-04421 - 财政年份:2022
- 资助金额:
$ 63.33万 - 项目类别:
Discovery Grants Program - Individual