CAREER: From Shallow to Deep Representation Learning: Global Nonconvex Optimization Theories and Efficient Algorithms
职业:从浅层到深层表示学习:全局非凸优化理论和高效算法
基本信息
- 批准号:2143904
- 负责人:
- 金额:$ 63.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Machine learning is by now transforming many fields of science and engineering. However, as data sets continuously increase in both volume and dimensions, the performance of modern machine-learning methods has become critically dependent on the data representations being used. In the past decade, although many deep-representation learning methods have enjoyed remarkable empirical success, the underlying principles behind this success have largely remained a mystery, a situation which has hindered further development and broader adoption. A major difficulty stems from the nonlinearities of the data representation models that often lead to complicated and challenging non-convex optimization problems. This project aims to advance the theoretical foundations from shallow-representation learning (e.g., learning sparsifying dictionaries) to deep-representation learning (e.g., learning deep neural networks) by exploiting the geometric properties of non-convex optimization landscapes and the intrinsic structures of the data. The impact of this research will take the form of new guiding principles for better model/architecture design, optimization and robustness in both supervised and unsupervised scenarios. The research program will be integrated with education activities that include training a diverse workforce in STEM at both undergraduate and graduate levels, designing machine learning modules appropriate for dissemination to K-12 students, and promoting women and underrepresented students through various outreach activities. This project seeks to bridge the gap between the theory and practice of representation learning by developing a principled and unified mathematical framework based on recent developments in global non-convex optimization theory. The mathematical foundations for both shallow and deep representation learning will be advanced by leveraging both the geometric properties of the corresponding non-convex optimization landscapes, and the low-dimensional structures of high-dimensional data. The resulting geometric insights will clarify the kind of representations can be learned through optimization, and will guide the development of efficient and globally convergent training algorithms. The proposed framework will be applied to the study of a wide spectrum of representation learning problems in supervised, self-supervised and unsupervised learning; correspondingly, their generalization and robustness will be investigated by understanding the learned representations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。机器学习正在改变许多科学和工程领域。然而,随着数据集在数量和维度上的不断增加,现代机器学习方法的性能已经变得严重依赖于所使用的数据表示。在过去的十年中,尽管许多深度表征学习方法在经验上取得了显著的成功,但这种成功背后的基本原理在很大程度上仍然是一个谜,这种情况阻碍了进一步的发展和更广泛的采用。一个主要的困难源于数据表示模型的非线性,这往往导致复杂和具有挑战性的非凸优化问题。该项目旨在推进浅层表征学习的理论基础(例如,学习稀疏化字典)到深度表示学习(例如,学习深度神经网络),利用非凸优化景观的几何属性和数据的内在结构。这项研究的影响将采取新的指导原则的形式,以更好的模型/架构设计,优化和监督和无监督场景的鲁棒性。该研究计划将与教育活动相结合,包括在本科和研究生阶段培训多元化的STEM劳动力,设计适合传播给K-12学生的机器学习模块,并通过各种外展活动促进妇女和代表性不足的学生。该项目旨在通过基于全局非凸优化理论的最新发展开发一个原则性和统一的数学框架,弥合表征学习理论和实践之间的差距。浅层和深层表示学习的数学基础将通过利用相应的非凸优化景观的几何属性和高维数据的低维结构来推进。由此产生的几何见解将澄清可以通过优化学习的表示类型,并将指导高效和全局收敛的训练算法的开发。建议的框架将被应用到监督,自我监督和无监督学习的表征学习问题的广泛研究;相应地,他们的泛化和鲁棒性将通过了解学到的representations.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Miniaturizing a Chip-Scale Spectrometer Using Local Strain Engineering and Total-Variation Regularized Reconstruction
- DOI:10.1021/acs.nanolett.2c02654
- 发表时间:2022-10-12
- 期刊:
- 影响因子:10.8
- 作者:Sarwar,Tuba;Yaras,Can;Ku,Pei-Cheng
- 通讯作者:Ku,Pei-Cheng
Neural Collapse with Normalized Features: A Geometric Analysis over the Riemannian Manifold
- DOI:10.48550/arxiv.2209.09211
- 发表时间:2022-09
- 期刊:
- 影响因子:0
- 作者:Can Yaras;Peng Wang;Zhihui Zhu;L. Balzano;Qing Qu
- 通讯作者:Can Yaras;Peng Wang;Zhihui Zhu;L. Balzano;Qing Qu
Hidden State Variability of Pretrained Language Models Can Guide Computation Reduction for Transfer Learning
- DOI:10.48550/arxiv.2210.10041
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Shuo Xie;Jiahao Qiu;Ankita Pasad;Li Du;Qing Qu;Hongyuan Mei
- 通讯作者:Shuo Xie;Jiahao Qiu;Ankita Pasad;Li Du;Qing Qu;Hongyuan Mei
Robust Training under Label Noise by Over-parameterization
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Sheng Liu;Zhihui Zhu;Qing Qu;Chong You
- 通讯作者:Sheng Liu;Zhihui Zhu;Qing Qu;Chong You
On the Optimization Landscape of Neural Collapse under MSE Loss: Global Optimality with Unconstrained Features
- DOI:10.48550/arxiv.2203.01238
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Jinxin Zhou-;Xiao Li;Tian Ding;Chong You;Qing Qu;Zhihui Zhu
- 通讯作者:Jinxin Zhou-;Xiao Li;Tian Ding;Chong You;Qing Qu;Zhihui Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Qu其他文献
Exact and Efficient Multi-Channel Sparse Blind Deconvolution — A Nonconvex Approach
精确高效的多通道稀疏盲反卷积——一种非凸方法
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Qing Qu;Xiao Li;Zhihui Zhu - 通讯作者:
Zhihui Zhu
Corrosion Behavior of Titanium in Artificial Saliva by Lactic Acid
- DOI:
doi:10.3390/ma7085528 - 发表时间:
2014 - 期刊:
- 影响因子:3.4
- 作者:
Qing Qu;Lei Wang;Yajun Chen;Lei Li;Yue He;Zhongtao Ding - 通讯作者:
Zhongtao Ding
Forest thinning effects on soil carbon stocks and dynamics: Perspective of soil organic carbon sequestration rates
森林疏伐对土壤碳储量和动态的影响:土壤有机碳固存速率的视角
- DOI:
10.1016/j.catena.2025.108759 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:5.700
- 作者:
Qing Qu;Hongwei Xu;Lin Xu;Chengming You;Bo Tan;Han Li;Li Zhang;Lixia Wang;Sining Liu;Zhenfeng Xu;Sha Xue;Minggang Wang - 通讯作者:
Minggang Wang
Enhanced nitrate reduction emvia/em the Ag–Cu–P catalyst for sustainable ammonia generation under ambient conditions
通过 Ag–Cu–P 催化剂在环境条件下实现可持续氨生成的增强型硝酸盐还原
- DOI:
10.1039/d3gc03859a - 发表时间:
2024-01-22 - 期刊:
- 影响因子:9.200
- 作者:
Xinwei Wen;Yue Zhao;Puyang Fan;Jiajie Wu;Kai Xiong;Chang Liu;Qing Qu;Lei Li - 通讯作者:
Lei Li
Inhibition of microbiologically influenced corrosion and biofouling of X70 carbon steels by near-superhydrophobic span class="small-caps"D/span-cysteine/Ag@ZIF-8 coatings
- DOI:
10.1016/j.corsci.2022.110682 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:8.500
- 作者:
Kexin Chen;Xiaoqiang Yang;Qing Qu;Tao Wu;Shuai Chen;Lei Li - 通讯作者:
Lei Li
Qing Qu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Qu', 18)}}的其他基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Foundations of Robust Deep Learning via Data Geometry and Dyadic Structure
合作研究:CIF:媒介:通过数据几何和二元结构实现稳健深度学习的基础
- 批准号:
2212326 - 财政年份:2022
- 资助金额:
$ 63.33万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
- 批准号:
2212066 - 财政年份:2022
- 资助金额:
$ 63.33万 - 项目类别:
Continuing Grant
相似国自然基金
青藏高原北部羌塘-可可西里关键区全地壳精细结构与浅-深构造变形关系
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
华北地区浅对流向深对流云转换过程的多源观测和机理研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
斑岩成矿系统浅部岩浆储库的关键控矿机制—来自西藏甲玛3000米科学深钻的矿物学证据
- 批准号:42272093
- 批准年份:2022
- 资助金额:57 万元
- 项目类别:面上项目
北秦岭寨根地区峡河岩群浅变质岩系是否经历了早古生代陆壳深俯冲作用及其构造地质意义
- 批准号:
- 批准年份:2022
- 资助金额:58 万元
- 项目类别:面上项目
窄行距小株距浅播深三七育苗播种覆土镇压机理及参数优化研究
- 批准号:32160425
- 批准年份:2021
- 资助金额:35.00 万元
- 项目类别:地区科学基金项目
全海深内孤立波统一表征及其在深—浅过渡区遥感方法反演应用研究
- 批准号:62161045
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
深/浅根型覆盖作物混种提升香蕉园土壤有机碳的生物学机制
- 批准号:32002133
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
干旱浅埋深灌区田间地表水地下水转化动力学过程与多维耦合模型
- 批准号:52009094
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用桡浅神经桥接至尺神经深支的健侧颈7移位术的探索性研究
- 批准号:81972122
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
浅埋非充分垮落区下开采覆岩结构联动失稳机理
- 批准号:51904200
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 63.33万 - 项目类别:
Continuing Grant
脳磁場逆問題における近接/深浅部混在電流源推定法の確立とてんかん焦点同定への応用
脑磁场逆问题中近/浅混合电流源估计方法的建立及其在癫痫病灶识别中的应用
- 批准号:
24K00892 - 财政年份:2024
- 资助金额:
$ 63.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333101 - 财政年份:2024
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
特徴的後続波形のモデリングから解明する内陸地殻浅部・深部低周波地震の発生機構
通过特征后续波形建模阐明浅层和深部内陆地壳低频地震的发生机制
- 批准号:
24K07164 - 财政年份:2024
- 资助金额:
$ 63.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing a remote sensing system for longshore sediment estimation at the research pier HORS
开发用于 HORS 研究码头沿岸沉积物估算的遥感系统
- 批准号:
22KF0419 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows
SCH: Shallow and Deep Personalization for Hearing Aids
SCH:助听器的浅度和深度个性化
- 批准号:
2306331 - 财政年份:2023
- 资助金额:
$ 63.33万 - 项目类别:
Standard Grant
浅部から深部まで一貫した火山性地震の検出によるマグマ供給プロセスの解明
通过检测从浅到深的一致火山地震来阐明岩浆供应过程
- 批准号:
22K14113 - 财政年份:2022
- 资助金额:
$ 63.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Mechanisms and rate of anthropogenic CO2 uptake in Canadian coastal waters and the response of shallow and deep-ocean carbonate sediments to ocean acidification.
加拿大沿海水域人为二氧化碳吸收的机制和速率以及浅海和深海碳酸盐沉积物对海洋酸化的响应。
- 批准号:
RGPIN-2018-04421 - 财政年份:2022
- 资助金额:
$ 63.33万 - 项目类别:
Discovery Grants Program - Individual
Estimation of long-period earthquake ground motion using subsurface velocity models from waveform inversions of earthquake records in major basins in Japan
利用日本主要盆地地震记录波形反演的地下速度模型估算长周期地震地面运动
- 批准号:
22H00234 - 财政年份:2022
- 资助金额:
$ 63.33万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A multi-tracers approach to quantifying Shield brines mixing and migration from deep to shallow aquifer systems
量化盾构盐水混合和从深层含水层系统到浅层含水层系统迁移的多示踪剂方法
- 批准号:
RGPIN-2018-05195 - 财政年份:2022
- 资助金额:
$ 63.33万 - 项目类别:
Discovery Grants Program - Individual