CAREER: Scaling Up First-Order Logical Reasoning with Graphical Structure
职业:用图形结构扩展一阶逻辑推理
基本信息
- 批准号:0546663
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-12-15 至 2010-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal 0546663"CAREER: Scaling Up First-Order Logical reasoning with Graphical Structure"PI: Eyal AmirUniversity of Illinois at Urbana-ChampaignThe ability to reason automatically about the world is central to Artificial Intelligence (AI). In recent years the number of objects and relations that applications must consider has increased dramatically, and current real-world applications require reasoning mechanisms that can scale to thousands and millions of objects and relations. This research focuses on scaling up logical inference to many objects using graph-based structures that are available in real-world domains. The key idea is a methodology for fast and correct inference in first-order logic (FOL) that can ignore most interactions between objects, functions, and predicates. The method works by partitioning the input FOL theory into a tree of sub-theories, identifying (seemingly essential) ignorable interactions, and creating a compact propositional encoding of the original theory. It reasons with that new encoding or uses the tree to guide reasoning in FOL directly.This project has the potential for wide Broader Impact through possible applications including object detection and complex queries on natural language texts. This project will integrate research and educational activities by involving students in the research and by integrating the research into both undergraduate and graduate classes.
提案0546663“职业:用图形结构扩展一阶逻辑推理“PI:Eyal Amir伊利诺伊大学厄巴纳-香槟分校自动推理世界的能力是人工智能(AI)的核心。 近年来,应用程序必须考虑的对象和关系的数量急剧增加,当前的现实世界的应用程序需要推理机制,可以扩展到成千上万的对象和关系。这项研究的重点是扩大逻辑推理,许多对象使用基于图的结构,可在现实世界的领域。其核心思想是一种在一阶逻辑(FOL)中进行快速和正确推理的方法,可以忽略对象,函数和谓词之间的大多数交互。该方法的工作原理是将输入的FOL理论划分为一个子理论树,识别(看似必要的)可验证的相互作用,并创建一个紧凑的命题编码的原始理论。 它的原因与新的编码或使用树来指导推理FOL直接。这个项目有可能通过可能的应用,包括对象检测和复杂的查询自然语言文本的广泛影响。 该项目将通过让学生参与研究并将研究融入本科生和研究生课程来整合研究和教育活动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eyal Amir其他文献
Input Feedback Networks: Classification and Inference Based on Network Structure
输入反馈网络:基于网络结构的分类和推理
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Tsvi Achler;Eyal Amir - 通讯作者:
Eyal Amir
Logical formalizations of commonsense reasoning : Papers from the AAAI Spring Symposium : Technical Report SS-07-05
常识推理的逻辑形式化:来自 AAAI 春季研讨会的论文:技术报告 SS-07-05
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Eyal Amir;V. Lifschitz;Rob Miller - 通讯作者:
Rob Miller
Theorem Proving with Structured Theories (Preliminary Report)*
用结构化理论证明定理(初步报告)*
- DOI:
10.1016/s1571-0653(04)00330-0 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Sheila Mcllraith;Eyal Amir - 通讯作者:
Eyal Amir
A Computer Game-Based Method for Studying Bullying and Cyberbullying
基于计算机游戏的欺凌和网络欺凌研究方法
- DOI:
10.1080/15388220.2014.963593 - 发表时间:
2015 - 期刊:
- 影响因子:2.4
- 作者:
J. F. Mancilla;D. Espelage;Eyal Amir - 通讯作者:
Eyal Amir
Emotions in Social Computer Games: Relations with Bullying, Aggression, and School Belonging
社交电脑游戏中的情绪:与欺凌、攻击和学校归属感的关系
- DOI:
10.4018/ijgcms.2014070104 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
J. F. Mancilla;D. Espelage;Eyal Amir - 通讯作者:
Eyal Amir
Eyal Amir的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eyal Amir', 18)}}的其他基金
SoCS: Analyzing Partially Observable Computer-Adolescent Networks
SoCS:分析部分可观察的计算机青少年网络
- 批准号:
0968552 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
RI: Small: Scaling Up Inference in Dynamic Systems with Logical Structure
RI:小:通过逻辑结构扩展动态系统中的推理
- 批准号:
0917123 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
CAREER: Scaling up Brain Circuit Reconstruction with Human-centric Machine Learning
职业:利用以人为本的机器学习扩大脑回路重建
- 批准号:
2239688 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Scaling-up effects of biodiversity on ecosystem productivity: from local communities to landscapes
职业:扩大生物多样性对生态系统生产力的影响:从当地社区到景观
- 批准号:
1845334 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Scaling-up Resistive Synaptic Arrays for Neuro-inspired Computing
职业:扩大电阻突触阵列以实现神经启发计算
- 批准号:
1903951 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Scaling Up Knowledge Discovery in High-Dimensional Data Via Nonconvex Statistical Optimization
职业:通过非凸统计优化扩大高维数据中的知识发现
- 批准号:
1906169 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Scaling Up Mobile Accessibility Through Touchscreen Personalization
职业:通过触摸屏个性化扩展移动辅助功能
- 批准号:
1818594 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Scaling Up Knowledge Discovery in High-Dimensional Data Via Nonconvex Statistical Optimization
职业:通过非凸统计优化扩大高维数据中的知识发现
- 批准号:
1652539 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Scaling-up Resistive Synaptic Arrays for Neuro-inspired Computing
职业:扩大电阻突触阵列以实现神经启发计算
- 批准号:
1552687 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Scaling Up Mobile Accessibility Through Touchscreen Personalization
职业:通过触摸屏个性化扩展移动辅助功能
- 批准号:
1350438 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Scaling up Modeling and Statistical Inference for Massive Collections of Time Series
职业:扩大大规模时间序列集合的建模和统计推断
- 批准号:
1350133 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Forming Better STEM Career Trajectories: Sustaining and Scaling-Up CAP
形成更好的 STEM 职业轨迹:维持和扩大 CAP
- 批准号:
1316702 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant