CAREER: Nonlinear Control of Human Skeletal Muscle
职业:人体骨骼肌的非线性控制
基本信息
- 批准号:0547448
- 负责人:
- 金额:$ 40.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-05-01 至 2012-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractThis CAREER award seeks to develop an integrated research and educational foundation in nonlinear control methods for artificial electrical stimulation of human skeletal muscle. Current clinical practices for treating medical disorders through the application of electrical stimulation are based on patient independent protocols for the open-loop adjustment of stimulation parameters (e.g., amplitude, phase, and pulse duration). Research focused on closed-loop electrical stimulation is based on either pure feedback control or feedback control with the addition of a feedforward component composed of soft computing elements (e.g., artificial neural networks, fuzzy logic sets). Unfortunately, these methods do not fully exploit the potential benefits of on-going research focused at more effectively modeling muscle response. Research efforts in this project will focus on the development and experimental validation of nonlinear control methodologies that incorporate muscle models in the design and analysis as a means to achieve a predictable response despite intra- and inter-subject variability and fatigable force production capabilities of the muscle. Outcomes of this research will advance knowledge in artificial electrical stimulation research through the development of new mathematical models that can be used to alter stimulation parameters to reduce fatigue. These models will be incorporated in the first ever use of Lyapunov-based methods as a means to encapsulate muscle response phenomena in a neuromuscular electrical stimulation controller. Lyapunov-based methods will be used to design controllers that exhibit input saturation and are adaptive to time-varying inter- and intra-subject variations, yielding a customizable neuroprosthesis. There are direct outcomes of the research efforts that impact society through the clinical applications and the scientific advancement of modeling and control research, but further outcomes will result by the exposure of students to human-machine interaction technologies and the impacts of science and engineering for the treatment of disease and disability.Neuromuscular electrical stimulation (i.e., the application of an electrical current via internal or external electrodes which results in a muscle contraction) offers an enormous promise to treat or alleviate the debilitating morbidity associated with certain diseases and dysfunctional conditions. Neuromuscular electrical stimulation is currently prescribed to treat a wide range of disorders and has rapidly grown because of the potential improvement in the activities of daily living for individuals with movement disorders such as stroke and spinal cord injuries that affect over one million Americans annually. In addition to serving as a treatment, neuromuscular electrical stimulation can provide an artificial extension to the body (i.e., a neural prosthetic) to restore or supplement function lost due to disease or injury with the goal of reducing the resulting implications on society and improving the quality of life of individuals. An attraction of such a neuroprosthesis is that the bodys own muscles are used to restore movement, leading to significant secondary benefits such as reducing muscle atrophy and the associated changes in metabolism and reduced risk for heart failure, the leading cause of death among individuals with spinal cord injuries. Unfortunately, current commercial electrical stimulation products have yielded limited functional outcomes for patients because ad hoc stimulation strategies are used that are not patient specific and lead to rapid muscle fatigue. The goals of this project are to develop new electrical stimulation controllers that (1) would enable long periods of physical activity that (2) could be customized and adapt to an individuals ever changing musculoskeletal system. To achieve the goals, efforts will focus on bridging the current gap between biological physiology research and control engineering research by incorporating neuromuscular models in novel adaptive control designs that elicit a desired muscle response. Given the potential benefits to the quality of life of an individual and the impacts on society of such emerging research, the worldwide market for neurotechnology products including motor system neuroprostheses, neuromodulation devices, and therapeutic muscle stimulators is predicted to grow from $2.4 billion in 2004 to $7.2 billion by 2008.
AbstractThis CAREER award旨在为人类骨骼肌人工电刺激的非线性控制方法开发一个综合研究和教育基础。用于通过电刺激的应用来治疗医学病症的当前临床实践是基于用于刺激参数的开环调节的患者独立协议(例如,幅度、相位和脉冲持续时间)。聚焦于闭环电刺激的研究基于纯反馈控制或添加了由软计算元件(例如,人工神经网络、模糊逻辑集)。不幸的是,这些方法没有充分利用正在进行的研究的潜在好处,重点是更有效地建模肌肉反应。本项目的研究工作将集中在非线性控制方法的开发和实验验证上,这些方法将肌肉模型纳入设计和分析中,作为实现可预测响应的一种手段,尽管肌肉的受试者内和受试者间的变异性和疲劳力的产生能力。这项研究的成果将通过开发新的数学模型来提高人工电刺激研究的知识,这些模型可用于改变刺激参数以减少疲劳。这些模型将被纳入到首次使用基于Lyapunov的方法中,作为将肌肉反应现象封装在神经肌肉电刺激控制器中的一种手段。基于Lyapunov的方法将用于设计控制器,该控制器表现出输入饱和度,并且适应于随时间变化的受试者间和受试者内的变化,从而产生可定制的神经假体。通过临床应用以及建模和控制研究的科学进步,研究工作的直接成果会影响社会,但学生接触人机交互技术以及科学和工程对疾病和残疾治疗的影响将产生进一步的成果。神经肌肉电刺激(即,通过内部或外部电极施加电流导致肌肉收缩)提供了治疗或减轻与某些疾病和功能障碍状况相关的衰弱性发病的巨大希望。神经肌肉电刺激目前被规定用于治疗各种疾病,并且由于对患有运动障碍(例如中风和脊髓损伤)的个人的日常生活活动的潜在改善而迅速发展,这些运动障碍每年影响超过一百万美国人。除了用作治疗之外,神经肌肉电刺激还可以向身体提供人工延伸(即,神经假体)来恢复或补充由于疾病或损伤而丧失的功能,目的是减少对社会的影响并提高个人的生活质量。这种神经假体的吸引力在于,身体自身的肌肉被用于恢复运动,从而带来显著的次要益处,例如减少肌肉萎缩和相关的新陈代谢变化,以及降低心力衰竭的风险,心力衰竭是脊髓损伤患者死亡的主要原因。不幸的是,目前的商业电刺激产品已经为患者产生了有限的功能结果,因为使用了非患者特异性的特别刺激策略,并且导致快速肌肉疲劳。该项目的目标是开发新的电刺激控制器,(1)能够实现长时间的身体活动,(2)可以定制并适应不断变化的肌肉骨骼系统。为了实现这一目标,将努力集中在弥合生物生理学研究和控制工程研究之间的差距,将神经肌肉模型纳入新的自适应控制设计,引起所需的肌肉反应。考虑到这些新兴研究对个人生活质量的潜在益处和对社会的影响,预计神经技术产品(包括运动系统神经假体、神经调节装置和治疗性肌肉刺激器)的全球市场将从2004年的24亿美元增长到2008年的72亿美元。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Warren Dixon其他文献
Warren Dixon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Warren Dixon', 18)}}的其他基金
Autonomous Control of Indoor Climate for Commercial Buildings
商业建筑室内气候自主控制
- 批准号:
1934322 - 财政年份:2019
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
Switched Adaptive Control Methods for Electrical Stimulation Induced Cycling
电刺激诱导循环的切换自适应控制方法
- 批准号:
1762829 - 财政年份:2018
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
Adaptive dynamic programming for uncertain nonlinear systems through coupling of nonlinear analysis and data-based learning
通过非线性分析和基于数据的学习的耦合对不确定非线性系统进行自适应动态规划
- 批准号:
1509516 - 财政年份:2015
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
2013 IEEE Conference on Decision and Control. To be Held in Florence, Italy, December,10-13, 2013.
2013 年 IEEE 决策与控制会议。
- 批准号:
1346261 - 财政年份:2013
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
Mitigation of Fatigue Induced Effects in Skeletal Muscle Through Closed-Loop Neuromuscular Electrical Stimulation
通过闭环神经肌肉电刺激减轻骨骼肌疲劳引起的影响
- 批准号:
1161260 - 财政年份:2012
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
Implicit Learning-Based Optimal Control of Uncertain Nonlinear Systems
不确定非线性系统基于隐式学习的最优控制
- 批准号:
0901491 - 财政年份:2009
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
SGER: Impact Modeling and Control for Human Robot Interaction
SGER:人机交互的影响建模和控制
- 批准号:
0738091 - 财政年份:2007
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
CAREER: Scheduling Driving Sensing and Control Nodes in Nonlinear Networks with Applications to Fuel-Free Energy Systems
职业:调度非线性网络中的驱动传感和控制节点及其在无燃料能源系统中的应用
- 批准号:
2044430 - 财政年份:2021
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
CAREER: Scheduling Driving Sensing and Control Nodes in Nonlinear Networks with Applications to Fuel-Free Energy Systems
职业:调度非线性网络中的驱动传感和控制节点及其在无燃料能源系统中的应用
- 批准号:
2152450 - 财政年份:2021
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
CAREER: The restricted nonlinear framework: A new paradigm for modeling, analysis and control of wall-bounded turbulent flows
职业:受限非线性框架:壁面湍流建模、分析和控制的新范式
- 批准号:
1652244 - 财政年份:2017
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
CAREER: Integrated Research and Education in Nonlinear Modal Decoupling and Control for Resilient Interconnected Power Systems
职业:弹性互联电力系统非线性模态解耦和控制的综合研究和教育
- 批准号:
1553863 - 财政年份:2016
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
CAREER: Sensor-based Modeling and Control of Nonlinear Dynamics in Complex Systems for Quality Improvements in Manufacturing and Healthcare
职业:复杂系统中基于传感器的非线性动力学建模和控制,以提高制造和医疗保健的质量
- 批准号:
1617148 - 财政年份:2015
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
CAREER: Sensor-based Modeling and Control of Nonlinear Dynamics in Complex Systems for Quality Improvements in Manufacturing and Healthcare
职业:复杂系统中基于传感器的非线性动力学建模和控制,以提高制造和医疗保健的质量
- 批准号:
1454012 - 财政年份:2015
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
CAREER: Advanced Nonlinear Control of ac/dc Micro Grids
职业:交流/直流微电网的高级非线性控制
- 批准号:
1151141 - 财政年份:2012
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
CAREER: Rescue and Control of Complex Networks of Dynamical Systems: Nonlinear Dynamics Approaches and Applications to Biological and Physical Networks
职业:动力系统复杂网络的救援和控制:非线性动力学方法及其在生物和物理网络中的应用
- 批准号:
1057128 - 财政年份:2011
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant
CAREER: Nonlinear Control for Single Molecule Tracking
职业:单分子追踪的非线性控制
- 批准号:
0845742 - 财政年份:2009
- 资助金额:
$ 40.3万 - 项目类别:
Standard Grant














{{item.name}}会员




