Implicit Learning-Based Optimal Control of Uncertain Nonlinear Systems
不确定非线性系统基于隐式学习的最优控制
基本信息
- 批准号:0901491
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A SummaryProject Summary: This project focuses on the synthesis of new implicit learning-based methods thatcan optimally achieve some control objective for an uncertain nonlinear system. The main research goalsinclude the development and experimental verification of implicit learning and adaptive methods that enablethe mismatch between the desired and actual response of an uncertain nonlinear system to convergewhile optimizing a trade-off between performance and control energy. Efforts will investigate if differentlearning and adaptive methods have properties that yield more optimal solutions or lead to improved stabilitymargins. Progress on this research topic has been stymied by the challenge of solving a Hamilton-Jacobiequation, and the lack of mathematical tools to asymptotically compensate for generic disturbances with acontinuous controller. With the emergence of new implicit learning methods and general Lyapunov analysistechniques, the community is now well positioned to focus increasing attention on simultaneously achievingoptimality and stability for uncertain nonlinear systems. The learning capacity of the developed controllerswill enable analytical optimal control solutions for a broader class of engineering systems than is currentlypossible. Optimizing the performance of a control system along with the required control effort will yieldimproved efficiency that can lead to timely economic and environmental cost savings.Intellectual Merit: Few mathematical tools exist to synthesize controllers for nonlinear systems with modeluncertainty and unmodeled disturbances. Of the few tools that exist, either the developed controller requiresdiscontinuous feedback or exhibits degraded steady-state performance in the sense of residual errors.Recent developments have produced a new class of continuous controllers that can implicitly learn suchdisturbances through a nonlinear differential equation. This advancement opens new possibilities to refocusthe nonlinear systems community on the dual stability and optimality problem for general systems. Efforts inthis project seek to explore how such implicit learning controllers (and potential permutations) can be usedto yield analytical solutions to different optimal control problems. The ability to integrate the proposed classof implicit learning controllers (and such controllers integrated with other adaptive and learning techniques)with optimal control methods is an unexplored concept. New closed-loop error system development, stabilityanalysis, and optimal analysis methods will be required to determine the interplay of optimality, learningcapacity, and robustness. Outcomes from these aims may provide an inroad to new ways to augmentcontrollers to incorporate optimality into the design process.Broad Impact: The theoretical discoveries are expected to have a transformative impact on optimal controlmethods for uncertain nonlinear systems. One approach to solve current optimal control problems is touse numerical methods that only provide local optimal results (at best), typically do not have a proof ofstability or optimality, and are typically open-loop. Also, numerical methods are black box approaches, sothe designer is shielded from any intuition regarding the effect of the system parameters on the optimality.These issues motivate the need for analytical methods. Yet, the challenge to develop analytical solutionsis that they often do not optimize the real engineering problem because of the narrow class of systemsthat can be analytically examined. The expected outcomes of this project are new mathematical tools todevelop analytical stability and optimality solutions for broad classes of nonlinear systems. Further broadimpact will be realized by integrating the research outcomes into educational and outreach efforts. Effortswill seek to disseminate the research outcomes to engineers in industry, researchers, and students rangingfrom grade school through graduate school with an emphasis on under-represented groups. Outcomes ofthe research will be disseminated to these groups through outlets including: peer-reviewed publications,conference workshops, curriculum development, the development of a new certificate program for industrialcontrol engineers, undergraduate honor?s thesis research, existing University of Florida programs for highschooland under-represented students, and a robotics summer camp for grade school children.A-
摘要项目摘要:本项目的重点是综合新的隐式学习为基础的方法,可以最佳地实现一些控制目标的不确定非线性系统。主要研究目标包括隐式学习和自适应方法的开发和实验验证,这些方法使不确定非线性系统的期望和实际响应之间的失配收敛,同时优化性能和控制能量之间的权衡。将努力研究不同的学习和自适应方法是否具有产生更优解决方案或提高稳定性的特性。由于求解Hamilton-Jacobi方程的困难,以及缺乏用连续控制器对一般扰动进行渐近补偿的数学工具,这一研究课题的进展一直受到阻碍。随着新的隐式学习方法和一般的李雅普诺夫分析技术的出现,社会现在很好地集中越来越多的注意力,同时succeingoptimality和稳定性的不确定非线性系统。开发的控制器的学习能力将使分析最优控制解决方案的更广泛的一类工程系统比目前可能的。优化控制系统的性能沿着所需的控制努力将yielimproved的效率,可以导致及时的经济和环境costs.Intellectual优点:存在几个数学工具来合成控制器的非线性系统模型的不确定性和未建模的干扰。现有的几个工具,无论是发达国家的控制器requiresdiscontinuous反馈或表现出退化的稳态性能的残余误差的意义上,最近的发展已经产生了一类新的连续控制器,可以隐式学习suchdisturbances通过一个非线性微分方程。这一进展开辟了新的可能性refocusthe非线性系统社区的对偶稳定性和一般系统的最优性问题。在这个项目中的努力寻求探索如何使用这种隐式学习控制器(和潜在的排列)来产生不同的最优控制问题的解析解。将隐式学习控制器(以及与其他自适应和学习技术相结合的控制器)与最优控制方法相结合的能力是一个未开发的概念。新的闭环误差系统的发展,稳定性分析,和最佳分析方法将需要确定的相互作用的最佳性,learningcapacity,和鲁棒性。从这些目标的结果可能会提供一个inroad到augmentcontrollers的新方法,将最优性的设计过程中。广泛的影响:理论上的发现,预计将有一个transformative的影响不确定非线性系统的最优控制方法。解决当前最优控制问题的一种方法是使用数值方法,这些方法只能提供局部最优结果(充其量),通常没有稳定性或最优性的证明,并且通常是开环的。另外,数值方法是黑箱方法,因此设计者无法直观地了解系统参数对最优性的影响,这些问题激发了分析方法的需求。然而,开发分析解决方案的挑战在于,由于可以分析检查的系统类别很窄,因此它们通常不会优化真实的工程问题。该项目的预期成果是新的数学工具,为广泛的非线性系统开发分析稳定性和最优性解决方案。通过将研究成果纳入教育和外联工作,将产生更广泛的影响。努力将寻求传播的研究成果,以工程师在行业,研究人员和学生从小学到研究生院,重点是代表性不足的群体。研究成果将通过以下渠道传播给这些群体:同行评议的出版物、会议研讨会、课程开发、工业控制工程师新证书项目的开发、本科生荣誉?的论文研究,佛罗里达大学现有的高中和代表性不足的学生项目,以及小学生的机器人夏令营。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Warren Dixon其他文献
Warren Dixon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Warren Dixon', 18)}}的其他基金
Autonomous Control of Indoor Climate for Commercial Buildings
商业建筑室内气候自主控制
- 批准号:
1934322 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Switched Adaptive Control Methods for Electrical Stimulation Induced Cycling
电刺激诱导循环的切换自适应控制方法
- 批准号:
1762829 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Adaptive dynamic programming for uncertain nonlinear systems through coupling of nonlinear analysis and data-based learning
通过非线性分析和基于数据的学习的耦合对不确定非线性系统进行自适应动态规划
- 批准号:
1509516 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
2013 IEEE Conference on Decision and Control. To be Held in Florence, Italy, December,10-13, 2013.
2013 年 IEEE 决策与控制会议。
- 批准号:
1346261 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Mitigation of Fatigue Induced Effects in Skeletal Muscle Through Closed-Loop Neuromuscular Electrical Stimulation
通过闭环神经肌肉电刺激减轻骨骼肌疲劳引起的影响
- 批准号:
1161260 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SGER: Impact Modeling and Control for Human Robot Interaction
SGER:人机交互的影响建模和控制
- 批准号:
0738091 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Nonlinear Control of Human Skeletal Muscle
职业:人体骨骼肌的非线性控制
- 批准号:
0547448 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Facilitating Autonomy of Robots Through Learning-Based Control
职业:通过基于学习的控制促进机器人的自主性
- 批准号:
2422698 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
- 批准号:
EP/Y021614/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
STTR Phase II: Optimized manufacturing and machine learning based automation of Endothelium-on-a-chip microfluidic devices for drug screening applications.
STTR 第二阶段:用于药物筛选应用的片上内皮微流体装置的优化制造和基于机器学习的自动化。
- 批准号:
2332121 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
SBIR Phase I: Lightweight Learning-based Camera Image Signal Processing (ISP) for Photon-Limited Imaging
SBIR 第一阶段:用于光子限制成像的轻量级基于学习的相机图像信号处理 (ISP)
- 批准号:
2335309 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
An investigation of the role of teacher intervention in effective digital game-based vocabulary learning
教师干预在有效的基于数字游戏的词汇学习中的作用的调查
- 批准号:
24K04078 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)