Autonomous Control of Indoor Climate for Commercial Buildings

商业建筑室内气候自主控制

基本信息

  • 批准号:
    1934322
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Buildings account for 45 percent of the total energy consumption in the United States (U.S.), and maintaining indoor climate, which includes heating, cooling, and ventilation, accounts for approximately half of that energy consumption. A low-cost option for reducing building energy usage is intelligent climate control, moving away from the prevalent "design for steady-state conditions" philosophy into one that exploits the constantly changing conditions a building operates in due to its occupants and the weather. The potential for intelligent climate control has been recognized for many years, especially for commercial buildings that have the requisite sensors and actuators. In particular, control algorithms that make decisions using real-time optimization have been shown to be highly promising. In spite of its promise, such "model-optimization" based control technologies have not been widely adopted by industry. The reason for this lack of translation to practice is the lack of autonomy of existing algorithms. Not only do they require expert human involvement in model creation, which have to be tuned for each building manually, they do not provide guarantees about the quality of real-time decisions. Addressing these weaknesses will lead to the wider adoption of intelligent building climate control technologies, which will contribute to the technological edge U.S. industries enjoy, and reduce the nation's energy usage.This research project seeks to make model+optimization based control of commercial buildings autonomous, thereby aiding wider adoption of such advanced technologies. The approach is to engineer both the modeling and optimization phases specifically for autonomy. The modeling approach is purely data driven so that it can be easily applied to any building. By using recently developed machine learning methods that guarantee certain beneficial model properties (e.g., stability), models can be updated over time purely from data without ever requiring a human expert to check the quality or suitability of the models. Similarly, the optimization problem is made convex by a choice of linear models so that real-time decision making can occur reliably without the optimizer getting stuck in a local minima or failing to converge. The reduction in accuracy due to the restriction to linear models is ameliorated by re-learning models over time, which is made possible by the autonomous data-driven nature of the model fitting algorithms. Finally, special care is taken to ensure that humidity and latent heat considerations, which are critical to hot humid climates, are taken into account both in the modeling and real-time optimization phases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,建筑物占总能源消耗的45%,而维持室内气候,包括供暖、制冷和通风,约占能源消耗的一半。减少建筑能耗的一个低成本选择是智能气候控制,它摆脱了流行的“为稳定状态而设计”的理念,而是利用建筑物因居住者和天气而不断变化的运行条件。多年来,人们已经认识到智能气候控制的潜力,特别是对于拥有必要的传感器和执行器的商业建筑。特别是,使用实时优化做出决策的控制算法已经被证明是非常有前途的。尽管这种基于“模型优化”的控制技术前景看好,但它并没有被工业广泛采用。缺乏翻译到实践的原因是现有算法缺乏自主性。它们不仅需要专业人员参与模型创建(必须为每座建筑手动调整),还不能保证实时决策的质量。解决这些弱点将导致智能建筑气候控制技术的更广泛采用,这将有助于美国工业享有的技术优势,并减少国家的能源使用。该研究项目旨在使基于模型+优化的商业建筑控制自主,从而帮助更广泛地采用这些先进技术。方法是设计专门针对自治的建模和优化阶段。建模方法纯粹是数据驱动的,因此可以很容易地应用于任何建筑。通过使用最近开发的保证某些有益的模型属性(例如稳定性)的机器学习方法,可以纯粹根据数据随时间更新模型,而不需要人类专家来检查模型的质量或适合性。同样,通过选择线性模型使优化问题成为凸问题,以便实时决策可以可靠地发生,而不会使优化器陷入局部极小或无法收敛。随着时间的推移,通过重新学习模型来改善由于对线性模型的限制而导致的精度降低,这是由于模型拟合算法的自主数据驱动的性质。最后,特别注意确保在建模和实时优化阶段都考虑到湿度和潜热因素,这对湿热气候至关重要。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reinforcement Learning for Control of Building HVAC Systems
  • DOI:
    10.23919/acc45564.2020.9147629
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Raman;Adithya M. Devraj;P. Barooah;Sean P. Meyn
  • 通讯作者:
    N. Raman;Adithya M. Devraj;P. Barooah;Sean P. Meyn
Reinforcement Learning for Optimal Control of a District Cooling Energy Plant
  • DOI:
    10.23919/acc53348.2022.9867239
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhong Guo;Austin R. Coffman;P. Barooah
  • 通讯作者:
    Zhong Guo;Austin R. Coffman;P. Barooah
Smart Home Energy Management System for Power System Resiliency
用于电力系统弹性的智能家居能源管理系统
Optimal Control of District Cooling Energy Plant With Reinforcement Learning and MPC
利用强化学习和 MPC 的区域供冷能源厂优化控制
Simultaneous identification of linear building dynamic model and disturbance using sparsity-promoting optimization
使用稀疏性促进优化同时识别线性建筑动力模型和扰动
  • DOI:
    10.1016/j.automatica.2021.109631
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Zeng, Tingting;Brooks, Jonathan;Barooah, Prabir
  • 通讯作者:
    Barooah, Prabir
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Warren Dixon其他文献

Warren Dixon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Warren Dixon', 18)}}的其他基金

Switched Adaptive Control Methods for Electrical Stimulation Induced Cycling
电刺激诱导循环的切换自适应控制方法
  • 批准号:
    1762829
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Adaptive dynamic programming for uncertain nonlinear systems through coupling of nonlinear analysis and data-based learning
通过非线性分析和基于数据的学习的耦合对不确定非线性系统进行自适应动态规划
  • 批准号:
    1509516
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
2013 IEEE Conference on Decision and Control. To be Held in Florence, Italy, December,10-13, 2013.
2013 年 IEEE 决策与控制会议。
  • 批准号:
    1346261
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Mitigation of Fatigue Induced Effects in Skeletal Muscle Through Closed-Loop Neuromuscular Electrical Stimulation
通过闭环神经肌肉电刺激减轻骨骼肌疲劳引起的影响
  • 批准号:
    1161260
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Implicit Learning-Based Optimal Control of Uncertain Nonlinear Systems
不确定非线性系统基于隐式学习的最优控制
  • 批准号:
    0901491
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SGER: Impact Modeling and Control for Human Robot Interaction
SGER:人机交互的影响建模和控制
  • 批准号:
    0738091
  • 财政年份:
    2007
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Nonlinear Control of Human Skeletal Muscle
职业:人体骨骼肌的非线性控制
  • 批准号:
    0547448
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Development of ultrasound field generator with large apertures embedded in indoor environment by electronic control of emission amplitude distribution
通过电子控制发射幅度分布开发嵌入室内环境的大孔径超声场发生器
  • 批准号:
    23K18488
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Autonomous Navigation and Control of Indoor UAVs
室内无人机自主导航与控制
  • 批准号:
    574555-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    University Undergraduate Student Research Awards
Developing datasets, models, algorithms, and interfaces for the occupant-centric control of indoor environments
开发数据集、模型、算法和接口,以实现以居住者为中心的室内环境控制
  • 批准号:
    546569-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
EAGER: Modeling and Control of COVID-19 Transmission in Indoor Environments
EAGER:室内环境中 COVID-19 传播的建模和控制
  • 批准号:
    2114439
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Study on prevention measures for infection of COVID-19 by means of ventilation and control of indoor air distribution
通过通风和控制室内空气分布预防COVID-19感染的措施研究
  • 批准号:
    21H01492
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a high-fidelity indoor airship dynamics simulation and control
高保真室内飞艇动力学仿真与控制的研制
  • 批准号:
    565300-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Developing datasets, models, algorithms, and interfaces for the occupant-centric control of indoor environments
开发数据集、模型、算法和接口,以实现以居住者为中心的室内环境控制
  • 批准号:
    546569-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Research on electromagnetic wave scattering wall to control of radio wave propagation indoor in next-generation wireless communications
下一代无线通信中电磁波散射墙控制无线电波室内传播的研究
  • 批准号:
    20K14744
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mites and fungal control of branched fatty acids and its application to indoor environment
支链脂肪酸的螨、真菌防治及其在室内环境中的应用
  • 批准号:
    20K02328
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing datasets, models, algorithms, and interfaces for the occupant-centric control of indoor environments
开发数据集、模型、算法和接口,以实现以居住者为中心的室内环境控制
  • 批准号:
    546569-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了