Collaborative Research: Generalized Propensity Score Methods
合作研究:广义倾向评分方法
基本信息
- 批准号:0550980
- 负责人:
- 金额:$ 20.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is well known that randomized treatment assignment can dramatically strengthen the force of causal inferences. Unfortunately, there is a wide array of scientific questions where ethical or practical concerns prohibit randomized treatments. It is in this context that nonparametric methods, such as matching and subclassification, are used to help adjust for pretreatment differences between the treatment and control groups. This project will extend the propensity score methods, which are widely used in applied research in order to conduct matching and subclassification with a large number of covariates, to a larger class of problems while maintaining their key advantages. Specifically, the study will (1) develop a generalized propensity score that is designed to handle more general treatment regimes, including categorical, ordinal, continuous, and multivariate treatments and (2) extend the use of propensity score methods to adjust for pretreatment measurements in randomized experiments in order to reduce the post-hoc bias that can be introduced by the choice of adjustment methods in typical data analyses.Observational studies play a key role in scientific investigation when results from ideal randomized experiments are not available. When practical or ethical concerns prevent randomized exposure to a supposed causal variable, such as smoking or an environmental hazard, scientists must rely on observational studies. Unfortunately, observational studies are difficult to analyze and can be riddled with biases since individuals who happen to be exposed to a supposed causal variable may be quite different from those who are not exposed. The significance of this research lies in an extension of the methods that have proved themselves highly useful in avoiding these biases. The effectiveness of the generalized propensity score methods will be illustrated through three concrete examples from medical and social science research: (1) a study of the effects of summer reading programs on autumn reading scores; (2) an investigation into the effectiveness of a proposed treatment for Fabry disease; and (3) the estimation of the causal effect of exposure to policy proposals on voting behavior. The new methods should have other applications throughout the physical, biological, and social sciences where causal inference is required with more complex causal variables than allowed for with current methods. The project also will extend methods to handle missing data and exploit some advantages of these methods for bias reduction in experimental settings.
众所周知,随机治疗分配可以极大地增强因果推论的力量。 不幸的是,存在大量的科学问题,其中伦理或实际问题禁止随机治疗。 正是在这种背景下,使用匹配和子分类等非参数方法来帮助调整治疗组和对照组之间的治疗前差异。 该项目将把广泛应用于应用研究中的倾向评分方法扩展到更大的问题类别,同时保持其主要优势,以便对大量协变量进行匹配和子分类。 具体来说,该研究将(1)开发一个广义倾向评分,旨在处理更一般的治疗方案,包括分类、有序、连续和多变量治疗;(2)扩展倾向评分方法的使用,以调整随机实验中的治疗前测量值,以减少典型数据分析中选择调整方法可能引入的事后偏差。观察性研究在科学中发挥着关键作用。 当无法获得理想的随机实验结果时进行调查。 当实际或道德问题阻止随机暴露于假定的因果变量(例如吸烟或环境危害)时,科学家必须依赖观察性研究。 不幸的是,观察性研究很难分析,并且可能充满偏见,因为碰巧接触到假定因果变量的个体可能与未接触过的个体有很大不同。 这项研究的意义在于扩展了已证明在避免这些偏见方面非常有用的方法。 广义倾向评分方法的有效性将通过医学和社会科学研究中的三个具体例子来说明:(1)夏季阅读计划对秋季阅读成绩影响的研究; (2) 对法布里病拟议治疗方法有效性的调查; (3) 政策提案暴露对投票行为的因果影响的估计。 新方法应该在整个物理、生物和社会科学领域有其他应用,这些领域需要比当前方法更复杂的因果变量进行因果推断。 该项目还将扩展处理缺失数据的方法,并利用这些方法的一些优点来减少实验设置中的偏差。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David van Dyk其他文献
David van Dyk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David van Dyk', 18)}}的其他基金
Collaborative Research: Highly Structured Models and Statistical Computation in High-Energy Astrophysics
合作研究:高能天体物理中的高度结构化模型和统计计算
- 批准号:
0406085 - 财政年份:2004
- 资助金额:
$ 20.51万 - 项目类别:
Standard Grant
Efficient Computation in Multi-level Models
多级模型的高效计算
- 批准号:
0438240 - 财政年份:2003
- 资助金额:
$ 20.51万 - 项目类别:
Continuing Grant
Efficient Computation in Multi-level Models
多级模型的高效计算
- 批准号:
0104129 - 财政年份:2001
- 资助金额:
$ 20.51万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210388 - 财政年份:2022
- 资助金额:
$ 20.51万 - 项目类别:
Standard Grant
Collaborative Research: Emerging Variants of Generalized Fiducial Inference
协作研究:广义基准推理的新兴变体
- 批准号:
2210337 - 财政年份:2022
- 资助金额:
$ 20.51万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
- 批准号:
2100785 - 财政年份:2021
- 资助金额:
$ 20.51万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
- 批准号:
2150486 - 财政年份:2021
- 资助金额:
$ 20.51万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
- 批准号:
2100791 - 财政年份:2021
- 资助金额:
$ 20.51万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
- 批准号:
2006612 - 财政年份:2020
- 资助金额:
$ 20.51万 - 项目类别:
Standard Grant
CNS Core: Medium: Collaborative Research: Generalized Caching-As-A-Service
CNS 核心:媒介:协作研究:通用缓存即服务
- 批准号:
1955593 - 财政年份:2020
- 资助金额:
$ 20.51万 - 项目类别:
Continuing Grant
CNS Core: Medium: Collaborative Research: Generalized Caching-As-A-Service
CNS 核心:媒介:协作研究:通用缓存即服务
- 批准号:
1956229 - 财政年份:2020
- 资助金额:
$ 20.51万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: Fundamentals of Ultra-Dense Wireless Networks with Generalized Repulsion
合作研究:中枢神经系统核心:小型:具有广义斥力的超密集无线网络的基础
- 批准号:
2006453 - 财政年份:2020
- 资助金额:
$ 20.51万 - 项目类别:
Standard Grant
Collaborative Research: Generalized Fiducial Inference in the Age of Data Science
协作研究:数据科学时代的广义基准推理
- 批准号:
1916125 - 财政年份:2019
- 资助金额:
$ 20.51万 - 项目类别:
Standard Grant














{{item.name}}会员




