Collaborative Research: FRG:Stochastic models for intracellular reaction networks

合作研究:FRG:细胞内反应网络的随机模型

基本信息

项目摘要

With the completion of numerous genome projects for bacteria, yeast, and humans, there is an increasing interest in understanding how molecules encoded within the genomes interact to define various functional networks of the cell. Network of integrated molecular reactions tend to involve many different molecular species, thus posing complex analytical problems. For prediction and simulation purposes it is essential to reduce both the model and computational complexity of the problem, while still capturing all the essential characteristics and potential behavior of the network. This project will systematically develop stochastic models for chemical reaction networks, beginning with classical Markov chain models and developing new models that take into account the stepwise development of reactions involving RNA and DNA molecules. Specific issues to be addressed include scaling limits based on the wide range of time and other quantitative scales in the system, model reduction through scaling limit approximations and other approaches, the implications of the combinatorial restrictions the reaction structure places on the system, sensitivity analysis for the parameters of the stochastic models, and statistical methods for model validation based on data that is frequently obtained through indirect and/or aggregated measurements.At the level of the cell, the chemical dynamics may well be dominated by the action of regulatory molecules that are present at levels of only a few copies per cell. Therefore, the molecular fluctuations of these components may determine the dynamics of the reaction network. These molecular fluctuations appear to have significant consequences; the observed large variation in rates of development, morphology and concentration of molecular species in a cell often lead to a randomization of phenotypic outcomes and non-genetic population heterogeneity. Since these fluctuations may have profound effects on the physiology of the cell, stochastic models for the intra-cellular reaction networks and careful statistical analysis appear to be essential if the system is to be well understood. The project will also provide a fertile training ground for graduate students and postdoctoral researchers. There is a high demand for well-trained mathematical scientists with the interest and expertise necessary to contribute to the solution of problems arising in cell and molecular biology.
随着大量细菌、酵母和人类基因组计划的完成,人们对理解基因组内编码的分子如何相互作用以定义细胞的各种功能网络越来越感兴趣。综合分子反应网络往往涉及许多不同的分子种类,从而提出了复杂的分析问题。为了预测和模拟的目的,必须减少问题的模型和计算复杂性,同时仍然捕获网络的所有基本特征和潜在行为。该项目将系统地开发化学反应网络的随机模型,从经典的马尔可夫链模型开始,开发考虑到涉及RNA和DNA分子的反应逐步发展的新模型。需要解决的具体问题包括基于大范围时间和系统中其他定量尺度的标度限制,通过标度限制近似和其他方法的模型简化,反应结构对系统的组合限制的影响,随机模型参数的敏感性分析,以及基于经常通过间接和/或聚合测量获得的数据的模型验证的统计方法。在细胞水平上,化学动力学很可能是由每个细胞只有几个拷贝的调节分子的作用所控制的。因此,这些组分的分子波动可能决定反应网络的动力学。这些分子波动似乎有重大后果;在细胞中观察到的发育速率、形态和分子种类浓度的巨大差异常常导致表型结果的随机化和非遗传群体异质性。由于这些波动可能对细胞的生理产生深远的影响,因此,如果要很好地理解该系统,细胞内反应网络的随机模型和仔细的统计分析似乎是必不可少的。该项目还将为研究生和博士后研究人员提供肥沃的培训场地。对训练有素的数学科学家有很高的需求,他们具有必要的兴趣和专业知识,有助于解决细胞和分子生物学中出现的问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grzegorz Rempala其他文献

Poisson network SIR epidemic model
  • DOI:
    10.1007/s13370-025-01339-0
  • 发表时间:
    2025-06-16
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Josephine Wairimu;Andrew Gothard;Grzegorz Rempala
  • 通讯作者:
    Grzegorz Rempala

Grzegorz Rempala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grzegorz Rempala', 18)}}的其他基金

Conference: Dynamical Systems in the Life Sciences. Satellite Workshop of the 2023 Annual SMB Meeting
会议:生命科学中的动力系统。
  • 批准号:
    2310816
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
RAPID: Modeling Outbreak of COVID-19 Using Dynamic Survival Analysis
RAPID:使用动态生存分析对 COVID-19 的爆发进行建模
  • 批准号:
    2027001
  • 财政年份:
    2020
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
Mini-symposium on Immunology and Infectious Diseases at BIOMATH2019
BIOMATH2019免疫学与传染病小型研讨会
  • 批准号:
    1923038
  • 财政年份:
    2019
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
Approximating Dynamics of Stochastic Contact Networks: Ebola Model
随机接触网络的近似动力学:埃博拉模型
  • 批准号:
    1853587
  • 财政年份:
    2019
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Continuing Grant
RAPID: Stochastic Ebola Modeling on Dynamic Contact Networks
RAPID:动态接触网络的随机埃博拉建模
  • 批准号:
    1513489
  • 财政年份:
    2015
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
AMC-SS: Biochemical Network Models with Next Gen Sequencing
AMC-SS:具有下一代测序的生化网络模型
  • 批准号:
    1318886
  • 财政年份:
    2013
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
AMC-SS: Biochemical Network Models with Next Gen Sequencing
AMC-SS:具有下一代测序的生化网络模型
  • 批准号:
    1106485
  • 财政年份:
    2011
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG:Stochastic models for intracellular reaction networks
合作研究:FRG:细胞内反应网络的随机模型
  • 批准号:
    0840695
  • 财政年份:
    2008
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 30.13万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了