RAPID: Modeling Outbreak of COVID-19 Using Dynamic Survival Analysis
RAPID:使用动态生存分析对 COVID-19 的爆发进行建模
基本信息
- 批准号:2027001
- 负责人:
- 金额:$ 19.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The outbreak of COVID-19 has created a tremendous need for predicting both the dynamics and the size of regional COVID-19 outbreaks. Equally important is the need to determine the potential effects of early interventions such as school closures and mandatory or self-imposed quarantines. To answer these questions, this project will develop a general mathematical framework for analyzing the ongoing outbreak trends using data solely from partially observed new daily infection counts (also known as the epidemic curve). The PI’s new framework will not assume any specific infectious or recovery periods (which are often unknown) or observable prevalence of the disease. The tools developed as part of this project will both help predict the rate of growth of new infections and estimate the effect of social distancing and other preventative measures on flattening the epidemic curve. The PI will use a new dynamical survival analysis approach to predict the trajectory of the COVID-19 epidemic for a mid-western region of the United States. Data from elsewhere in the world, like the city of Wuhan in China, will be used to calibrate the predictions. The project will also provide a practical interdisciplinary training for a PhD student and a post-doctoral fellow.The modeling and predictive framework to be developed is fundamentally different from the traditional approach based on the incidence or prevalence counts in a compartmental SIR model. Specifically, the PI will apply the dynamical survival analysis (DSA) approach that considers aggregated mean field equations for the underlying large stochastic network and regards them as the approximate survival law of the infection times. The PI will use these DSA-based equations to model both the epidemic and recovery curves and compare them with the ones observed during the COVID-19 outbreak. The statistical analysis of epidemic data performed with the help of the new framework will allow the quick elucidation of the dynamics of an epidemic (for example, the basic reproduction number, R0) and the potential impact of interventions (such as quarantine or social distancing). The new framework will help provide a better understanding of how preventive behaviors affect COVID-19 dynamics via changes in the network structure and changes in disease transmission across edges in the network. This project will develop a user-friendly software package for computer simulations under different parameter and intervention scenarios (for example, vaccination schemes) that will lead to a better understanding of how to control COVID-19 transmission.This grant is being awarded using funds made available by the Coronavirus Aid, Relief, and Economic Security (CARES) Act supplemental funds allocated to MPS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19的爆发产生了对预测区域COVID-19爆发的动态和规模的巨大需求。同样重要的是,需要确定早期干预措施的潜在影响,如关闭学校和强制或自我强制的停课。为了回答这些问题,该项目将开发一个通用的数学框架,用于分析正在进行的疫情趋势,仅使用部分观察到的每日新感染计数(也称为流行曲线)的数据。PI的新框架将不假设任何特定的传染期或恢复期(通常是未知的)或可观察到的疾病流行率。作为该项目的一部分开发的工具将有助于预测新感染的增长率,并估计社交距离和其他预防措施对拉平流行病曲线的影响。PI将使用一种新的动态生存分析方法来预测美国中西部地区COVID-19疫情的发展轨迹。来自世界其他地方的数据,如中国武汉市,将被用来校准预测。该项目还将为一名博士生和一名博士后研究员提供实用的跨学科培训。将要开发的建模和预测框架与基于房室SIR模型中的发病率或患病率计数的传统方法有着根本的不同。具体而言,PI将应用动态生存分析(DSA)方法,该方法考虑底层大型随机网络的聚合平均场方程,并将其视为感染时间的近似生存法则。PI将使用这些基于DSA的方程来模拟流行和恢复曲线,并将其与COVID-19爆发期间观察到的曲线进行比较。借助新框架对流行病数据进行的统计分析将能够迅速阐明流行病的动态(例如,基本繁殖数R 0)和干预措施(例如隔离或社交距离)的潜在影响。新框架将有助于更好地了解预防行为如何通过网络结构的变化和网络边缘疾病传播的变化影响COVID-19动态。本项目将开发一个用户友好的软件包,用于在不同参数和干预方案下进行计算机模拟(例如,疫苗接种计划),这将有助于更好地了解如何控制COVID-19传播。这笔赠款将使用冠状病毒援助,救济,经济安全(CARES)该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估被认为值得支持。影响审查标准。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Likelihood-Free Dynamical Survival Analysis applied to the COVID-19 epidemic in Ohio
- DOI:10.3934/mbe.2023192
- 发表时间:2023-01-01
- 期刊:
- 影响因子:2.6
- 作者:Klaus,Colin;Wascher,Matthew;Rempala,Grzegorz A.
- 通讯作者:Rempala,Grzegorz A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grzegorz Rempala其他文献
Poisson network SIR epidemic model
- DOI:
10.1007/s13370-025-01339-0 - 发表时间:
2025-06-16 - 期刊:
- 影响因子:0.700
- 作者:
Josephine Wairimu;Andrew Gothard;Grzegorz Rempala - 通讯作者:
Grzegorz Rempala
Grzegorz Rempala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grzegorz Rempala', 18)}}的其他基金
Conference: Dynamical Systems in the Life Sciences. Satellite Workshop of the 2023 Annual SMB Meeting
会议:生命科学中的动力系统。
- 批准号:
2310816 - 财政年份:2023
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Mini-symposium on Immunology and Infectious Diseases at BIOMATH2019
BIOMATH2019免疫学与传染病小型研讨会
- 批准号:
1923038 - 财政年份:2019
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Approximating Dynamics of Stochastic Contact Networks: Ebola Model
随机接触网络的近似动力学:埃博拉模型
- 批准号:
1853587 - 财政年份:2019
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
RAPID: Stochastic Ebola Modeling on Dynamic Contact Networks
RAPID:动态接触网络的随机埃博拉建模
- 批准号:
1513489 - 财政年份:2015
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
AMC-SS: Biochemical Network Models with Next Gen Sequencing
AMC-SS:具有下一代测序的生化网络模型
- 批准号:
1318886 - 财政年份:2013
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
AMC-SS: Biochemical Network Models with Next Gen Sequencing
AMC-SS:具有下一代测序的生化网络模型
- 批准号:
1106485 - 财政年份:2011
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Collaborative Research: FRG:Stochastic models for intracellular reaction networks
合作研究:FRG:细胞内反应网络的随机模型
- 批准号:
0840695 - 财政年份:2008
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Collaborative Research: FRG:Stochastic models for intracellular reaction networks
合作研究:FRG:细胞内反应网络的随机模型
- 批准号:
0553701 - 财政年份:2006
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
- 批准号:
2327435 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
CAREER: Modeling and Decoding Host-Microbiome Interactions in Gingival Tissue
职业:建模和解码牙龈组织中宿主-微生物组的相互作用
- 批准号:
2337322 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
- 批准号:
2338621 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
- 批准号:
2332469 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
- 批准号:
2346964 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
- 批准号:
2344259 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
- 批准号:
2340882 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant