RAPID: Modeling Outbreak of COVID-19 Using Dynamic Survival Analysis
RAPID:使用动态生存分析对 COVID-19 的爆发进行建模
基本信息
- 批准号:2027001
- 负责人:
- 金额:$ 19.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The outbreak of COVID-19 has created a tremendous need for predicting both the dynamics and the size of regional COVID-19 outbreaks. Equally important is the need to determine the potential effects of early interventions such as school closures and mandatory or self-imposed quarantines. To answer these questions, this project will develop a general mathematical framework for analyzing the ongoing outbreak trends using data solely from partially observed new daily infection counts (also known as the epidemic curve). The PI’s new framework will not assume any specific infectious or recovery periods (which are often unknown) or observable prevalence of the disease. The tools developed as part of this project will both help predict the rate of growth of new infections and estimate the effect of social distancing and other preventative measures on flattening the epidemic curve. The PI will use a new dynamical survival analysis approach to predict the trajectory of the COVID-19 epidemic for a mid-western region of the United States. Data from elsewhere in the world, like the city of Wuhan in China, will be used to calibrate the predictions. The project will also provide a practical interdisciplinary training for a PhD student and a post-doctoral fellow.The modeling and predictive framework to be developed is fundamentally different from the traditional approach based on the incidence or prevalence counts in a compartmental SIR model. Specifically, the PI will apply the dynamical survival analysis (DSA) approach that considers aggregated mean field equations for the underlying large stochastic network and regards them as the approximate survival law of the infection times. The PI will use these DSA-based equations to model both the epidemic and recovery curves and compare them with the ones observed during the COVID-19 outbreak. The statistical analysis of epidemic data performed with the help of the new framework will allow the quick elucidation of the dynamics of an epidemic (for example, the basic reproduction number, R0) and the potential impact of interventions (such as quarantine or social distancing). The new framework will help provide a better understanding of how preventive behaviors affect COVID-19 dynamics via changes in the network structure and changes in disease transmission across edges in the network. This project will develop a user-friendly software package for computer simulations under different parameter and intervention scenarios (for example, vaccination schemes) that will lead to a better understanding of how to control COVID-19 transmission.This grant is being awarded using funds made available by the Coronavirus Aid, Relief, and Economic Security (CARES) Act supplemental funds allocated to MPS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19的爆发产生了巨大的需求,以预测区域Covid-19的动态和大小。同样重要的是,需要确定早期干预措施的潜在影响,例如学校关闭以及强制性或自我强加的隔离。为了回答这些问题,该项目将开发一个一般的数学框架,用于使用仅部分观察到的新的日常感染计数(也称为流行病曲线)的数据来分析正在进行的爆发趋势。 PI的新框架不会假设该疾病的任何特定的感染或恢复期(通常是未知的)或可观察到的患病率。作为该项目的一部分开发的工具既将有助于预测新感染的增长速度,并估算社会疏远和其他预防措施对扁平流行曲线的影响。 PI将使用一种新的动态生存分析方法来预测美国中西部地区Covid-19的轨迹。像中国武汉一样,来自世界其他地方的数据将用于校准预测。该项目还将为博士生和博士后研究员提供实用的跨学科培训。要开发的建模和预测框架与基于事件的传统方法或普遍性计数在隔间sir模型中的数量根本不同。具体而言,PI将采用动态生存分析(DSA)方法,该方法考虑了基础大型随机网络的汇总平均场等值,并将其视为感染时间的近似生存法。 PI将使用这些基于DSA的方程式对流行曲线进行建模,并将其与在199疫情中观察到的方程式进行比较。借助新框架进行的流行数据的统计分析将允许快速阐明流行病的动力学(例如,基本的繁殖数,R0)以及干预措施的潜在影响(例如隔离或社会疏远)。新框架将有助于更好地理解预防行为如何通过网络结构的变化以及跨网络边缘疾病传播的变化来影响Covid-19动态。 This project will develop a user-friendly software package for computer simulations Under different parameter and intervention scenarios (for example, vaccination schemes) that will lead to a better understanding of how to control COVID-19 transmission.This grant is being awarded using funds made available by the Coronavirus Aid, Relief, and Economic Security (CARES) Act supplemental funds allocated to MPS.This award reflects NSF's statutory mission and has been deemed使用基金会的智力优点和更广泛的影响审查标准通过评估来支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Likelihood-Free Dynamical Survival Analysis applied to the COVID-19 epidemic in Ohio
- DOI:10.3934/mbe.2023192
- 发表时间:2023-01-01
- 期刊:
- 影响因子:2.6
- 作者:Klaus,Colin;Wascher,Matthew;Rempala,Grzegorz A.
- 通讯作者:Rempala,Grzegorz A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grzegorz Rempala其他文献
Grzegorz Rempala的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grzegorz Rempala', 18)}}的其他基金
Conference: Dynamical Systems in the Life Sciences. Satellite Workshop of the 2023 Annual SMB Meeting
会议:生命科学中的动力系统。
- 批准号:
2310816 - 财政年份:2023
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Mini-symposium on Immunology and Infectious Diseases at BIOMATH2019
BIOMATH2019免疫学与传染病小型研讨会
- 批准号:
1923038 - 财政年份:2019
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Approximating Dynamics of Stochastic Contact Networks: Ebola Model
随机接触网络的近似动力学:埃博拉模型
- 批准号:
1853587 - 财政年份:2019
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
RAPID: Stochastic Ebola Modeling on Dynamic Contact Networks
RAPID:动态接触网络的随机埃博拉建模
- 批准号:
1513489 - 财政年份:2015
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
AMC-SS: Biochemical Network Models with Next Gen Sequencing
AMC-SS:具有下一代测序的生化网络模型
- 批准号:
1318886 - 财政年份:2013
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
AMC-SS: Biochemical Network Models with Next Gen Sequencing
AMC-SS:具有下一代测序的生化网络模型
- 批准号:
1106485 - 财政年份:2011
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Collaborative Research: FRG:Stochastic models for intracellular reaction networks
合作研究:FRG:细胞内反应网络的随机模型
- 批准号:
0840695 - 财政年份:2008
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Collaborative Research: FRG:Stochastic models for intracellular reaction networks
合作研究:FRG:细胞内反应网络的随机模型
- 批准号:
0553701 - 财政年份:2006
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
相似国自然基金
热液改造型页岩成储机理研究——以松辽盆地青一段为例
- 批准号:42372150
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
- 批准号:52205201
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
几何造型与机器学习融合的图像数据拟合问题研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
- 批准号:72271252
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
Strep-CaDI: A fast, accurate, and sensitive point-of-care test for Group A Streptococcus
Strep-CaDI:快速、准确且灵敏的 A 组链球菌现场检测
- 批准号:
10699852 - 财政年份:2023
- 资助金额:
$ 19.86万 - 项目类别:
Rapid Tests for Recent Infection (RTRI) for Precision Public Health in Sub-Saharan Africa: Next-Generation Strategies Amid Changing HIV Epidemiology
撒哈拉以南非洲地区近期感染快速检测 (RTRI) 实现精准公共卫生:艾滋病毒流行病学变化中的下一代策略
- 批准号:
10620014 - 财政年份:2022
- 资助金额:
$ 19.86万 - 项目类别:
RAPID: Modeling and Analytics for COVID-19 Outbreak Response in India: A multi-institutional, US-India joint collaborative effort
RAPID:印度 COVID-19 疫情应对的建模和分析:美印多机构联合协作
- 批准号:
2142997 - 财政年份:2021
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
Development and Proof-of-Concept Implementation of the South Florida Miami RADx-rad SARS-CoV-2 Wastewater-Based Surveillance Infrastructure
南佛罗里达州迈阿密 RADx-rad SARS-CoV-2 废水监测基础设施的开发和概念验证实施
- 批准号:
10321001 - 财政年份:2021
- 资助金额:
$ 19.86万 - 项目类别:
Development and Proof-of-Concept Implementation of the South Florida Miami RADx-rad SARS-CoV-2 Wastewater-Based Surveillance Infrastructure
南佛罗里达州迈阿密 RADx-rad SARS-CoV-2 废水监测基础设施的开发和概念验证实施
- 批准号:
10264591 - 财政年份:2021
- 资助金额:
$ 19.86万 - 项目类别: