RAPID: Stochastic Ebola Modeling on Dynamic Contact Networks

RAPID:动态接触网络的随机埃博拉建模

基本信息

  • 批准号:
    1513489
  • 负责人:
  • 金额:
    $ 17.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-01-15 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

As the world faces a large outbreak of Ebola epidemic, several vaccines are currently in clinical trials with a reasonable chance of being available in the field in early 2015. Since the initial amount of vaccine will be limited, the understanding of Ebola epidemic dynamics is essential for maximizing the effectiveness of public health intervention through a combination of targeted vaccination, monitoring and quarantine.This project is concerned with developing a realistic but at the same time mathematically tractable and statistically predictive dynamic model of the current world-wide Ebola epidemics. The modeling approach that divides the population into three groups (susceptibles, infected, and removed--the so-called SIR model) and its various generalizations has been used historically as an important tool in deciding whether epidemics grow or dissipate. The investigators expand the traditional model of an SIR stochastic epidemic on a graph with a given degree distribution, in order to account for the Ebola-specific features. These include, among others, incorporating a class of individuals at high risk of infection (e.g., health workers), and incorporating a dynamic network structure that reflects how contacts with different segments of the population change over the course of infection within host.The new mathematical model describing the way in which Ebola spreads through a network of human contacts, both in rural and urban areas as well as across countries and continents, will be informed by the actual field data from various parts of the world including Africa and the United States. It is expected that the model will allow public health and government officials to quickly analyze a host of different intervention scenarios in order to speed up the current epidemic's dissipation and to select the most effective way of preventing, or at least minimizing, the future outbreaks.
随着世界面临埃博拉疫情的大规模爆发,几种疫苗目前正在进行临床试验,很有可能在2015年初投入使用。由于最初的疫苗数量将是有限的,了解埃博拉疫情动态对于通过有针对性的疫苗接种、监测和隔离相结合最大限度地发挥公共卫生干预的有效性至关重要。该项目致力于开发一个现实但同时在数学上易于处理的、统计上可预测的当前全球埃博拉疫情的动态模型。将人口分成三组(易感人群、感染人群和被移除人群--所谓的SIR模型)及其各种概括的建模方法,历史上一直被用作确定流行病是增长还是消散的重要工具。研究人员在给定度分布的图上扩展了SIR随机流行病的传统模型,以解释埃博拉特有的特征。其中包括纳入一类高感染风险的个人(例如卫生工作者),并纳入一个动态的网络结构,反映与不同人群的接触在宿主内感染过程中的变化。描述埃博拉病毒在农村和城市以及跨国家和大陆的人际接触网络传播方式的新数学模型将由包括非洲和美国在内的世界不同地区的实际现场数据提供信息。预计该模型将允许公共卫生和政府官员快速分析一系列不同的干预情景,以加快当前疫情的消散,并选择最有效的预防方法,或者至少将未来的疫情降至最低。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grzegorz Rempala其他文献

Poisson network SIR epidemic model
  • DOI:
    10.1007/s13370-025-01339-0
  • 发表时间:
    2025-06-16
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Josephine Wairimu;Andrew Gothard;Grzegorz Rempala
  • 通讯作者:
    Grzegorz Rempala

Grzegorz Rempala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grzegorz Rempala', 18)}}的其他基金

Conference: Dynamical Systems in the Life Sciences. Satellite Workshop of the 2023 Annual SMB Meeting
会议:生命科学中的动力系统。
  • 批准号:
    2310816
  • 财政年份:
    2023
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
RAPID: Modeling Outbreak of COVID-19 Using Dynamic Survival Analysis
RAPID:使用动态生存分析对 COVID-19 的爆发进行建模
  • 批准号:
    2027001
  • 财政年份:
    2020
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Mini-symposium on Immunology and Infectious Diseases at BIOMATH2019
BIOMATH2019免疫学与传染病小型研讨会
  • 批准号:
    1923038
  • 财政年份:
    2019
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Approximating Dynamics of Stochastic Contact Networks: Ebola Model
随机接触网络的近似动力学:埃博拉模型
  • 批准号:
    1853587
  • 财政年份:
    2019
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
AMC-SS: Biochemical Network Models with Next Gen Sequencing
AMC-SS:具有下一代测序的生化网络模型
  • 批准号:
    1318886
  • 财政年份:
    2013
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
AMC-SS: Biochemical Network Models with Next Gen Sequencing
AMC-SS:具有下一代测序的生化网络模型
  • 批准号:
    1106485
  • 财政年份:
    2011
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG:Stochastic models for intracellular reaction networks
合作研究:FRG:细胞内反应网络的随机模型
  • 批准号:
    0840695
  • 财政年份:
    2008
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG:Stochastic models for intracellular reaction networks
合作研究:FRG:细胞内反应网络的随机模型
  • 批准号:
    0553701
  • 财政年份:
    2006
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Research Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
  • 批准号:
    EP/Y033507/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Standard Grant
Cell factory design: unlocking the Multi-Objective Stochastic meTabolic game (MOST)
细胞工厂设计:解锁多目标随机代谢游戏(MOST)
  • 批准号:
    EP/X041239/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Research Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
  • 批准号:
    EP/Y033248/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Research Grant
CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
  • 批准号:
    2339240
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
  • 批准号:
    2338221
  • 财政年份:
    2024
  • 资助金额:
    $ 17.66万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了