Collaborative Research: FRG: Inverse Problems in Transport Theory
合作研究:FRG:传输理论中的反问题
基本信息
- 批准号:0554097
- 负责人:
- 金额:$ 28.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports research by a group of applied and computational mathematicians and biomedical engineers who will analyze, implement, and test image reconstruction algorithms in the emerging fields of optical tomography and optical molecular imaging. These imaging techniques are based on using photons to probe tissues and deduce their optical properties and on using molecular markers, which seek out changes inside cells that are precursors for disease development, and emit radiation that is detectable outside the body. Mathematically, we will analyze linear and non-linear inverse problems in radiative transfer theory when only angularly averaged information is available at the domain boundary. We will then devise and implement robust and accurate algorithms that reconstruct optical properties of tissues and locations of source terms from practically available measurements. We will develop fast image reconstruction algorithms, based on analytic methods applicable in simple geometries, and will test them using large data sets of experimental data from a non-contact optical tomography system operated by the University of Pennsylvania group.brbrThis project brings together an interdisciplinary team of researchers at the interface of pure and applied mathematics, theoretical physics, and medicine in order to attack mathematical problems in optical imaging of biological systems. This research is at the forefront of efforts to achieve a molecular understanding of both basic biological processes and disease states. The investigators will combine their expertise in optical physics and the modeling of the propagation of light in highly-scattering media, such as biological tissue, with mathematical studies of inverse problems. The long term goal is to understand the mathematical structure of inverse problems for the so-called radiative transport equation, and to use this knowledge to develop computationally efficient methods for image reconstruction in optical tomography.
该奖项支持一组应用和计算数学家和生物医学工程师的研究,他们将在光学断层扫描和光学分子成像新兴领域分析、实施和测试图像重建算法。 这些成像技术基于使用光子探测组织并推断其光学特性,以及使用分子标记来寻找细胞内作为疾病发展前兆的变化,并发射可在体外检测到的辐射。 在数学上,当域边界仅提供角平均信息时,我们将分析辐射传输理论中的线性和非线性逆问题。然后,我们将设计并实施稳健且准确的算法,从实际可用的测量中重建组织的光学特性和源项的位置。 我们将开发基于适用于简单几何形状的分析方法的快速图像重建算法,并将使用来自宾夕法尼亚大学小组运营的非接触式光学断层扫描系统的大型实验数据集来测试它们。brbr该项目汇集了纯数学和应用数学、理论物理和医学交叉学科的研究人员团队,以解决数学问题 生物系统的光学成像。这项研究处于对基本生物过程和疾病状态进行分子理解的前沿。 研究人员将把他们在光学物理学和光在生物组织等高散射介质中传播的建模方面的专业知识与反问题的数学研究结合起来。长期目标是了解所谓的辐射传输方程反演问题的数学结构,并利用这些知识开发光学断层扫描中图像重建的计算有效方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guillaume Bal其他文献
Z2 classification of FTR symmetric differential operators and obstruction to Anderson localization
FTR对称微分算子的Z2分类及其对安德森定位的阻碍
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Guillaume Bal;Zhongjian Wang - 通讯作者:
Zhongjian Wang
Modeling terrestrial carbon sources for juvenile Chinook salmon in the Merced River, California
模拟加利福尼亚州默塞德河幼年奇努克鲑鱼的陆地碳源
- DOI:
10.1016/j.fooweb.2016.02.003 - 发表时间:
2016 - 期刊:
- 影响因子:1.7
- 作者:
Salvador Becerra;Guillaume Bal;Domenic Giudice;T. Heyne;Steve Tsao - 通讯作者:
Steve Tsao
Complex Gaussianity of long-distance random wave processes
长距离随机波过程的复高斯性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Guillaume Bal;Anjali Nair - 通讯作者:
Anjali Nair
RTI (“Real-Time Incentives”) outperforms traditional management in a simulated mixed fishery and cases incorporating protection of vulnerable species and areas
RTI(“实时激励”)在模拟混合渔业以及纳入保护脆弱物种和区域的案例中优于传统管理
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
S. Kraak;D. Reid;Guillaume Bal;A. Barkai;Edward A. Codling;C. Kelly;E. Rogan - 通讯作者:
E. Rogan
Characterizing the strength of density dependence in at-risk species through Bayesian model averaging
通过贝叶斯模型平均来表征危险物种的密度依赖性强度
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.1
- 作者:
Guillaume Bal;M. Scheuerell;E. Ward - 通讯作者:
E. Ward
Guillaume Bal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guillaume Bal', 18)}}的其他基金
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
Workshop: Mathematical Trends In Medical Imaging
研讨会:医学成像的数学趋势
- 批准号:
1953824 - 财政年份:2020
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
From Topological Insulators to Hybrid Inverse Problems
从拓扑绝缘体到混合逆问题
- 批准号:
1908736 - 财政年份:2019
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
Propagation of Stochasticity in PDEs and Hybrid Inverse Problems
偏微分方程和混合反问题中随机性的传播
- 批准号:
1834403 - 财政年份:2017
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
Propagation of Stochasticity in PDEs and Hybrid Inverse Problems
偏微分方程和混合反问题中随机性的传播
- 批准号:
1408867 - 财政年份:2014
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
Equations with random coefficients and Inverse Problems
具有随机系数的方程和反问题
- 批准号:
1108608 - 财政年份:2011
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
Partial Differential Equations with random coefficients and Inverse Problems
具有随机系数的偏微分方程和反问题
- 批准号:
0804696 - 财政年份:2008
- 资助金额:
$ 28.18万 - 项目类别:
Continuing Grant
CAREER: Time Reversal and Inverse Problems in Wave and Particle Propagation
职业:波和粒子传播中的时间反演和反演问题
- 批准号:
0239097 - 财政年份:2003
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
Derivation and Simulation in Radiative Transfer Theory
辐射传输理论的推导与模拟
- 批准号:
0233549 - 财政年份:2002
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
Derivation and Simulation in Radiative Transfer Theory
辐射传输理论的推导与模拟
- 批准号:
0072008 - 财政年份:2000
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 28.18万 - 项目类别:
Continuing Grant