Partial Differential Equations with random coefficients and Inverse Problems

具有随机系数的偏微分方程和反问题

基本信息

  • 批准号:
    0804696
  • 负责人:
  • 金额:
    $ 30.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

The project concerns the analysis of partial differential equations with heterogeneous coefficients (for instance describing the propagation of waves or particles in complex media modeled as random media) and the theory of inverse problems. Many solutions to differential equations with heterogeneous coefficients are not accessible to us because they are too expensive to obtain even with today's computational capabilities. The derivation of macroscopic models, which average the small-scale heterogeneities one way or another, is then in order. In many applications, one is interested not only in the (deterministic) ensemble average of the solution, for which many theories exist, but also in a quantitative description of its random fluctuations, i.e., the part that cannot be modeled in a deterministic manner. Understanding the latter fluctuations is the first goal of the project. Once a model has been proposed, the second question pertains to the reconstruction of the coefficients in the equation from available measurements, typically performed at the boundary of a domain of interest. A quantitative understanding of how these inverse problems are affected by the random fluctuations in the solution is the second major objective of the project. Equations with random (highly heterogeneous) coefficients are ubiquitous in applied sciences. Applications include the modeling of geological basins and of nuclear reactors, the manufacturing of composite materials, the propagation of probing waves or particles as they are used in remote sensing, medical imaging, and geophysical imaging. The project will provide a better understanding of the quality of available measurements in these applications and then provide answers to the following type of questions: what is it we can learn about our medium (e.g. a human body in medical imaging, a concentration of pollutants in atmospheric imaging) from available measurements? What are the scales that we can understand and those that mathematically cannot be reconstructed? How does one optimally mitigate the influence of unavoidable noise in the data?
该项目涉及分析具有非均匀系数的偏微分方程(例如描述波或粒子在模拟为随机介质的复杂介质中的传播)和反问题理论。许多解决方案的微分方程与非均匀系数是我们无法访问,因为他们太昂贵,以获得即使与今天的计算能力。宏观模型的推导,以某种方式平均小尺度的不均匀性,然后是有序的。在许多应用中,人们不仅对解的(确定性)系综平均感兴趣,对此存在许多理论,而且还对其随机波动的定量描述感兴趣,即,不能以确定性方式建模的部分。了解后者的波动是该项目的第一个目标。一旦提出了模型,第二个问题涉及从可用的测量值重建方程中的系数,通常在感兴趣的域的边界处执行。该项目的第二个主要目标是定量地了解这些反问题如何受到解中随机波动的影响。具有随机(高度异质)系数的方程在应用科学中无处不在。应用包括地质盆地和核反应堆的建模,复合材料的制造,探测波或粒子的传播,因为它们被用于遥感,医学成像和地球物理成像。 该项目将使人们更好地了解这些应用中现有测量的质量,然后回答以下类型的问题:我们可以从现有测量中了解我们的介质(例如,医学成像中的人体,大气成像中的污染物浓度)? 哪些尺度是我们可以理解的,哪些尺度是数学上无法重建的?如何最佳地减轻数据中不可避免的噪声的影响?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guillaume Bal其他文献

Z2 classification of FTR symmetric differential operators and obstruction to Anderson localization
FTR对称微分算子的Z2分类及其对安德森定位的阻碍
Modeling terrestrial carbon sources for juvenile Chinook salmon in the Merced River, California
模拟加利福尼亚州默塞德河幼年奇努克鲑鱼的陆地碳源
  • DOI:
    10.1016/j.fooweb.2016.02.003
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Salvador Becerra;Guillaume Bal;Domenic Giudice;T. Heyne;Steve Tsao
  • 通讯作者:
    Steve Tsao
Complex Gaussianity of long-distance random wave processes
长距离随机波过程的复高斯性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guillaume Bal;Anjali Nair
  • 通讯作者:
    Anjali Nair
RTI (“Real-Time Incentives”) outperforms traditional management in a simulated mixed fishery and cases incorporating protection of vulnerable species and areas
RTI(“实时激励”)在模拟混合渔业以及纳入保护脆弱物种和区域的案例中优于传统管理
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Kraak;D. Reid;Guillaume Bal;A. Barkai;Edward A. Codling;C. Kelly;E. Rogan
  • 通讯作者:
    E. Rogan
Characterizing the strength of density dependence in at-risk species through Bayesian model averaging
通过贝叶斯模型平均来表征危险物种的密度依赖性强度
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Guillaume Bal;M. Scheuerell;E. Ward
  • 通讯作者:
    E. Ward

Guillaume Bal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guillaume Bal', 18)}}的其他基金

Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
  • 批准号:
    2306411
  • 财政年份:
    2023
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Workshop: Mathematical Trends In Medical Imaging
研讨会:医学成像的数学趋势
  • 批准号:
    1953824
  • 财政年份:
    2020
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
From Topological Insulators to Hybrid Inverse Problems
从拓扑绝缘体到混合逆问题
  • 批准号:
    1908736
  • 财政年份:
    2019
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Propagation of Stochasticity in PDEs and Hybrid Inverse Problems
偏微分方程和混合反问题中随机性的传播
  • 批准号:
    1834403
  • 财政年份:
    2017
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Propagation of Stochasticity in PDEs and Hybrid Inverse Problems
偏微分方程和混合反问题中随机性的传播
  • 批准号:
    1408867
  • 财政年份:
    2014
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Equations with random coefficients and Inverse Problems
具有随机系数的方程和反问题
  • 批准号:
    1108608
  • 财政年份:
    2011
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Collaborative Research: FRG: Inverse Problems in Transport Theory
合作研究:FRG:传输理论中的反问题
  • 批准号:
    0554097
  • 财政年份:
    2006
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
CAREER: Time Reversal and Inverse Problems in Wave and Particle Propagation
职业:波和粒子传播中的时间反演和反演问题
  • 批准号:
    0239097
  • 财政年份:
    2003
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Derivation and Simulation in Radiative Transfer Theory
辐射传输理论的推导与模拟
  • 批准号:
    0233549
  • 财政年份:
    2002
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Derivation and Simulation in Radiative Transfer Theory
辐射传输理论的推导与模拟
  • 批准号:
    0072008
  • 财政年份:
    2000
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
  • 批准号:
    2424305
  • 财政年份:
    2024
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Continuing Grant
A new numerical analysis for partial differential equations with noise
带有噪声的偏微分方程的新数值分析
  • 批准号:
    DP220100937
  • 财政年份:
    2023
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Discovery Projects
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 30.2万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了