Forward and Inverse Problems for Topological Insulators and Kinetic Equations

拓扑绝缘体和动力学方程的正逆问题

基本信息

  • 批准号:
    2306411
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Topological insulators are novel materials with the potential to transform communications capabilities using electronic (spintronics) and photonic structures. The main reason is the transport properties observed at the interface separating such insulators: transmission is protected topologically and hence immune to defects and impurities. The main objective of this proposal is to further the quantitative understanding of such materials and to characterize their properties from scattering measurements. As a second objective, the principal investigator will continue to develop the theoretical understanding of several transport models that find direct applications in novel medical imaging modalities such as Photo-acoustic tomography or multi-energy computerized tomography. This project also provides research training opportunities for graduate students. Mathematically, new tools will be developed in the derivation and analysis of partial differential models to quantify such insulators, in particular Floquet topological insulators and insulators generated by gated twisted bilayer graphene sheets. This will involve the development of integral formulations to accurately simulate transport properties of these materials. An inverse scattering method will also be devised to characterize the coefficients in the differential models from far field scattering measurements. Another important thrust of the project is to propose a semiclassical analysis of wave-packet propagation along conducting interfaces separating such insulators. On the medical imaging side, the main objective of this proposal is to analyze inverse transport models such as the Fokker Planck and the integral geometric settings that appear in multi-energy computerized tomography.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拓扑绝缘体是一种新型材料,具有利用电子(自旋电子学)和光子结构改变通信能力的潜力。主要原因是在隔开这些绝缘体的界面上观察到的传输特性:传输受到拓扑保护,因此不受缺陷和杂质的影响。这项建议的主要目的是加深对这类材料的定量理解,并根据散射测量确定其性质。作为第二个目标,首席研究人员将继续发展对几种传输模型的理论理解,这些模型直接应用于新的医学成像模式,如光声断层扫描或多能量计算机断层扫描。该项目还为研究生提供了研究培训机会。在数学上,将开发新的工具来推导和分析偏微分模型,以量化这种绝缘体,特别是弗洛奎特拓扑绝缘体和由栅极扭曲的双层石墨烯片产生的绝缘体。这将涉及开发积分公式,以准确地模拟这些材料的传输特性。还将设计一种逆散射方法来表征来自远场散射测量的微分模型中的系数。该项目的另一个重要目的是提出一种半经典分析波包沿分隔这些绝缘子的导电界面传播的方法。在医学成像方面,这项建议的主要目标是分析逆传输模型,如福克-普朗克模型和出现在多能量计算机断层扫描中的积分几何设置。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guillaume Bal其他文献

Z2 classification of FTR symmetric differential operators and obstruction to Anderson localization
FTR对称微分算子的Z2分类及其对安德森定位的阻碍
Modeling terrestrial carbon sources for juvenile Chinook salmon in the Merced River, California
模拟加利福尼亚州默塞德河幼年奇努克鲑鱼的陆地碳源
  • DOI:
    10.1016/j.fooweb.2016.02.003
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Salvador Becerra;Guillaume Bal;Domenic Giudice;T. Heyne;Steve Tsao
  • 通讯作者:
    Steve Tsao
Complex Gaussianity of long-distance random wave processes
长距离随机波过程的复高斯性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guillaume Bal;Anjali Nair
  • 通讯作者:
    Anjali Nair
RTI (“Real-Time Incentives”) outperforms traditional management in a simulated mixed fishery and cases incorporating protection of vulnerable species and areas
RTI(“实时激励”)在模拟混合渔业以及纳入保护脆弱物种和区域的案例中优于传统管理
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Kraak;D. Reid;Guillaume Bal;A. Barkai;Edward A. Codling;C. Kelly;E. Rogan
  • 通讯作者:
    E. Rogan
A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature
量化溪流水温不确定性的分层贝叶斯模型
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guillaume Bal;E. Rivot;J. White;Etienne
  • 通讯作者:
    Etienne

Guillaume Bal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guillaume Bal', 18)}}的其他基金

Workshop: Mathematical Trends In Medical Imaging
研讨会:医学成像的数学趋势
  • 批准号:
    1953824
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
From Topological Insulators to Hybrid Inverse Problems
从拓扑绝缘体到混合逆问题
  • 批准号:
    1908736
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Propagation of Stochasticity in PDEs and Hybrid Inverse Problems
偏微分方程和混合反问题中随机性的传播
  • 批准号:
    1834403
  • 财政年份:
    2017
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Propagation of Stochasticity in PDEs and Hybrid Inverse Problems
偏微分方程和混合反问题中随机性的传播
  • 批准号:
    1408867
  • 财政年份:
    2014
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Equations with random coefficients and Inverse Problems
具有随机系数的方程和反问题
  • 批准号:
    1108608
  • 财政年份:
    2011
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Partial Differential Equations with random coefficients and Inverse Problems
具有随机系数的偏微分方程和反问题
  • 批准号:
    0804696
  • 财政年份:
    2008
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: Inverse Problems in Transport Theory
合作研究:FRG:传输理论中的反问题
  • 批准号:
    0554097
  • 财政年份:
    2006
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CAREER: Time Reversal and Inverse Problems in Wave and Particle Propagation
职业:波和粒子传播中的时间反演和反演问题
  • 批准号:
    0239097
  • 财政年份:
    2003
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Derivation and Simulation in Radiative Transfer Theory
辐射传输理论的推导与模拟
  • 批准号:
    0233549
  • 财政年份:
    2002
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Derivation and Simulation in Radiative Transfer Theory
辐射传输理论的推导与模拟
  • 批准号:
    0072008
  • 财政年份:
    2000
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant

相似国自然基金

新型简化Inverse Lax-Wendroff方法的发展与应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
  • 批准号:
    11801143
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
  • 批准号:
    2313033
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Grants Program - Individual
OAC Core: Toward a Rigorous and Reliable Scientific Deep Learning Framework for Forward, Inverse, and UQ Problems
OAC 核心:针对正向、逆向和 UQ 问题建立严格可靠的科学深度学习框架
  • 批准号:
    2212442
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
  • 批准号:
    RGPIN-2020-04568
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Grants Program - Individual
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Grants Program - Individual
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
  • 批准号:
    RGPIN-2020-04568
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Grants Program - Individual
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
  • 批准号:
    RGPIN-2020-04568
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Grants Program - Individual
Forward and Inverse Problems of Electromagnetics: Novel Algorithms and Their Implementations
电磁学的正向和逆向问题:新算法及其实现
  • 批准号:
    RGPIN-2020-05399
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Grants Program - Individual
Analyzing Neural Network Dynamics as Forward and Inverse Problems in the Connection Weights
将神经网络动力学分析为连接权重中的正向和逆向问题
  • 批准号:
    DGECR-2020-00334
  • 财政年份:
    2020
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Discovery Launch Supplement
CAREER: Stochastic Forward and Inverse Problems Involving Dynamical Systems
职业:涉及动力系统的随机正向和逆向问题
  • 批准号:
    1847144
  • 财政年份:
    2019
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了