Models and Applications of Loop Quantum Gravity

环量子引力模型及应用

基本信息

  • 批准号:
    0554771
  • 负责人:
  • 金额:
    $ 4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2007-05-31
  • 项目状态:
    已结题

项目摘要

In order to explore the implications of proposed theories of quantum gravity for space and time, it is often useful to study the theories' effects for special space-times. Symmetric solutions and related models present one of the main examples of this approach, motivated by the wish to extract physical information from (classical or) quantum gravity. While proposed quantum gravity theories are sufficiently complex that how to construct symmetric models is not obvious, several techniques have been developed for one of the current candidates for a quantum theory of gravity, loop quantum gravity. For realistic situations, which are never exactly symmetric, more general constructions containing at least small deviations from symmetry such as spatial inhomogeneities will be developed. This generalization may allow calculation of quantum gravity effects which might be relevant to cosmological observations or to understand properties of black holes.Since quantum theories of gravity are still being developed, any information on the behavior of possible candidates, in particular in physical scenarios, will help to guide the theoretical construction. Quantum gravity, in turn, is widely believed to be essential for the understanding of the universe at a fundamental level. This applies in particular to the two main areas of application of application of the simplified, cosmology and black holes, which also receive wide interest in the general public. Models as developed by this project enable intuitive explanations which make such a broad dissemination possible. In simplifying the complex full theories, suitable models also provide ideal entry points for students or researchers new to the field.
为了探索所提出的量子引力理论对空间和时间的影响,研究这些理论对特殊时空的影响往往是有用的。对称解和相关模型是这种方法的主要例子之一,其动机是希望从(经典或)量子引力中提取物理信息。虽然提出的量子引力理论非常复杂,如何构建对称模型并不明显,但已经开发了几种技术,用于当前量子引力理论的候选者之一,环量子引力。对于从不完全对称的现实情况,将发展出更一般的结构,至少包含与对称性的小偏差,例如空间不均匀性。这一推广可以计算量子引力效应,这可能与宇宙观测或了解黑洞的性质有关。由于量子引力理论仍在发展中,任何关于可能候选者行为的信息,特别是在物理场景中的信息,将有助于指导理论构建。反过来,量子引力被广泛认为是在基本层面上理解宇宙的必要条件。这尤其适用于简化应用的两个主要领域,宇宙学和黑洞,它们也受到广大公众的广泛关注。该项目开发的模型使直观的解释成为可能,从而使如此广泛的传播成为可能。在简化复杂的完整理论的同时,合适的模型也为刚进入该领域的学生或研究人员提供了理想的切入点。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Bojowald其他文献

Original questions
原始问题
  • DOI:
    10.1038/436920a
  • 发表时间:
    2005-08-17
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Martin Bojowald
  • 通讯作者:
    Martin Bojowald
Quantum gravity, hydrodynamics and emergent cosmology: a collection of perspectives
  • DOI:
    10.1007/s10714-024-03335-4
  • 发表时间:
    2024-12-18
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Jibril Ben Achour;Dario Benedetti;Martin Bojowald;Robert Brandenberger;Salvatore Butera;Renata Ferrero;Flaminia Giacomini;Kristina Giesel;Christophe Goeller;Tobias Haas;Philipp A. Höhn;Joshua Kirklin;Luca Marchetti;Daniele Oriti;Roberto Percacci;Antonio D. Pereira;Andreas G. A. Pithis;Mairi Sakellariadou;Sebastian Steinhaus;Johannes Thürigen
  • 通讯作者:
    Johannes Thürigen
Faithful realizations of semiclassical truncations
半经典截断的忠实实现
  • DOI:
    10.1016/j.aop.2020.168247
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Bekir Baytas;Martin Bojowald;Sean Crowe
  • 通讯作者:
    Sean Crowe
Noncommutative quantum field theory and gravity
  • DOI:
    10.1007/s10714-011-1203-9
  • 发表时间:
    2011-07-08
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Konstantinos Anagnostopoulos;Paolo Aschieri;Martin Bojowald;Harald Grosse;Larisa Jonke;George Zoupanos
  • 通讯作者:
    George Zoupanos
Faithful realizations of semiclassical truncations
  • DOI:
    doi.org/10.1016/j.aop.2020.168247
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Bekir Baytas;Martin Bojowald;Sean Crowe
  • 通讯作者:
    Sean Crowe

Martin Bojowald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Bojowald', 18)}}的其他基金

Effective Descriptions of Quantum Gravity and Cosmology
量子引力和宇宙学的有效描述
  • 批准号:
    2206591
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Effective Descriptions of Quantum Gravity and Cosmology
量子引力和宇宙学的有效描述
  • 批准号:
    1912168
  • 财政年份:
    2019
  • 资助金额:
    $ 4万
  • 项目类别:
    Standard Grant
Effective Descriptions of Quantum Gravity and Cosmology
量子引力和宇宙学的有效描述
  • 批准号:
    1607414
  • 财政年份:
    2016
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Effective Descriptions of Quantum Gravity and Cosmology
量子引力和宇宙学的有效描述
  • 批准号:
    1307408
  • 财政年份:
    2013
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
CAREER: Effective Descriptions of Quantum Systems in Cosmology
职业:宇宙学中量子系统的有效描述
  • 批准号:
    0748336
  • 财政年份:
    2008
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant
Models and Applications of Loop Quantum Gravity
环量子引力模型及应用
  • 批准号:
    0653127
  • 财政年份:
    2007
  • 资助金额:
    $ 4万
  • 项目类别:
    Continuing Grant

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Continuous extrusion of Cu-based material from recycling loop into semi-finished products for sustainable applications.
将铜基材料从回收循环中连续挤压成半成品,以实现可持续应用。
  • 批准号:
    2879504
  • 财政年份:
    2023
  • 资助金额:
    $ 4万
  • 项目类别:
    Studentship
Development of closed-loop control systems for therapeutic applications of brain-computer interfaces
脑机接口治疗应用闭环控制系统的开发
  • 批准号:
    2743399
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
    Studentship
Wearable RF-EEG Cap for closed loop TMS/fMRI/EEG Applications
适用于闭环 TMS/fMRI/EEG 应用的可穿戴 RF-EEG 帽
  • 批准号:
    10750485
  • 财政年份:
    2022
  • 资助金额:
    $ 4万
  • 项目类别:
Next Generation Loop Heat Pipe wick technology for thermal management of Space and Terrestrial applications
用于空间和地面应用热管理的下一代环路热管芯技术
  • 批准号:
    2141789
  • 财政年份:
    2018
  • 资助金额:
    $ 4万
  • 项目类别:
    Studentship
Adaptive control systems for multi-point teleoperated human-in-the-loop applications with haptic feedback
具有触觉反馈的多点远程操作人在环应用的自适应控制系统
  • 批准号:
    501262-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 4万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Adaptive control systems for multi-point teleoperated human-in-the-loop applications with haptic feedback
具有触觉反馈的多点远程操作人在环应用的自适应控制系统
  • 批准号:
    501262-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 4万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Elucidation of conformation and bistability of a multi-jointed elastic loop structure and its applications
多关节弹性环结构的构象和双稳定性阐明及其应用
  • 批准号:
    16K14115
  • 财政年份:
    2016
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Adaptive control systems for multi-point teleoperated human-in-the-loop applications with haptic feedback
具有触觉反馈的多点远程操作人在环应用的自适应控制系统
  • 批准号:
    501262-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 4万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Construction of harmonic maps into non-compact symmetric spaces via loop groups and applications to surface theory
通过环群将调和映射构造为非紧对称空间及其在表面理论中的应用
  • 批准号:
    15K04834
  • 财政年份:
    2015
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Weierstrass type representation for surfaces via loop group method and its applications
环群法曲面的Weierstrass型表示及其应用
  • 批准号:
    26400059
  • 财政年份:
    2014
  • 资助金额:
    $ 4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了