Wearable RF-EEG Cap for closed loop TMS/fMRI/EEG Applications
适用于闭环 TMS/fMRI/EEG 应用的可穿戴 RF-EEG 帽
基本信息
- 批准号:10750485
- 负责人:
- 金额:$ 5.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAnatomyAreaBRAIN initiativeBasic ScienceBrainBrain DiseasesBrain imagingBrain regionCareer ChoiceCephalicClinicalComplementDataDeep Brain StimulationElectroencephalographyElectronicsElectrophysiology (science)ElementsEngineeringFDA approvedFeedbackFunctional Magnetic Resonance ImagingFutureGoalsHandHeadHelmetHumanImageImaging TechniquesIndividualInterventionKnowledgeMagnetic Resonance ImagingMagnetismMajor Depressive DisorderMeasurementMeasuresMentorsMethodologyMethodsModalityMonitorMorphologic artifactsMultimodal ImagingNeuronsNeurosciencesObsessive-Compulsive DisorderOutcomePatientsPatternPerformancePhasePrefrontal CortexResearchResolutionShapesSignal TransductionStructureSystemTechnologyTestingTherapeuticTherapeutic EffectTimeTrainingTranscranial magnetic stimulationTranslatingTreatment ProtocolsValidationbrain dysfunctionbrain electrical activityclinical applicationclinical efficacydata acquisitiondesignexperimental studyfabricationflexibilityhealthy volunteerhemodynamicsimprovedindividual variationindividualized medicineinstrumentationmultimodal neuroimagingmultimodalityneuroimagingneurophysiologyneuroregulationnoninvasive brain stimulationnoveloperationprogramspsychiatric symptomradio frequencyreduce symptomssimulationskillsspatiotemporaltechnology validationtemporal measurementtoolusability
项目摘要
Project Summary
Functional MRI (fMRI) is the prevailing method for both basic research and clinical functional neuroimaging in
humans. A key component behind state-of-the-art fMRI is the multichannel radio frequency (RF) receive coil
technology, which enables parallel imaging acceleration for improved spatial and temporal resolution. However,
these imaging coils are usually fabricated on a hard helmet-shaped plastic chassis. This constitutes a critical
barrier for multimodal approaches combining fMRI with other non-invasive brain imaging and stimulation
methods such as electroencephalography (EEG) and transcranial magnetic simulation (TMS). While invaluable
for large-scale imaging of both superficial and deep brain structures with high resolution, fMRI is an indirect
measure of neuronal activity: it assesses brain function through the measurement of hemodynamic changes
driven by local neuronal activity. Therefore, research approaches that combine fMRI with TMS would greatly
benefit from the capability to concurrently also record EEG to obtain a direct neurophysiological measure of the
underlying electrical brain activity. Specifically, the availability of simultaneously acquired EEG data would help
us to (i) address fundamental questions on the mechanisms of TMS-induced changes in network-level brain
activations and (ii) enable closed loop therapeutic applications for individually tailored treatment protocols.
We propose to overcome the critical technological barriers for combined non-invasive stimulation (TMS) and
multimodal imaging (EEG-fMRI) by applying flexible RF coil technology. Our overarching goal is to build and test
a first-of-its-kind TMS compatible integrated multimodal imaging array, a “RF-EEG cap”, to allow simultaneous
fMRI and EEG acquisition concurrently with TMS. To achieve this, we will employ flexible TMS-compatible RF
coil elements sewed to a specifically tailored cap directly integrated with a commercial MRI compatible EEG cap.
Used in conjunction with an MRI-compatible TMS coil to modulate ongoing brain activity, the system will enable
studies of causal relationships between brain regions noninvasively with unprecedented spatiotemporal
resolution, thus contributing to one of the main goals of the BRAIN Initiative. The project utilizes the extensive
knowledge of the team mentors and collaborators in the fields of RF coil design and TMS/multimodal imaging
and the availability of MR compatible TMS and EEG systems at MGH/Martinos Center. The candidate’s goal is
to achieve the skills needed to launch her independent long-term research program on developing multimodal
TMS/EEG/fMRI instrumentation and applying these methods in studies on the human brain. The proposed
project will complement the candidate's strong prior expertise in designing and building TMS-compatible MRI
hardware. The main training elements are 1) to extend the applicant's RF engineering skills to optimize the
proposed flexible RF coil technology and 2) to advance her simultaneous multimodal neuroimaging/stimulation
expertise for leading projects that use EEG/fMRI/EEG to test human neuroscience hypotheses.
项目摘要
功能性MRI(fMRI)是基础研究和临床功能性神经影像学的流行方法
人类。最先进的fMRI背后的关键组成部分是多通道射频(RF)接收线圈
技术,可以实现并行成像加速度,以改善空间和临时分辨率。然而,
这些成像线圈通常在硬头盔形塑料机箱上制造。这构成了关键
多模式方法将fMRI与其他非侵入性脑成像和刺激相结合的障碍物
诸如脑电图(EEG)和经颅磁模拟(TMS)之类的方法。虽然宝贵
对于具有高分辨率的浅表和深脑结构的大规模成像,fMRI是间接的
神经元活性的测量:它通过测量血流动力学变化来评估脑功能
由局部神经元活动驱动。因此,将fMRI与TMS结合的研究方法将很棒
从能力中受益的同时还记录了脑电图获得直接神经生理学措施
基础电脑活动。具体而言,简单获得的脑电图数据的可用性将有助于
我们要(i)解决有关TMS诱导的网络级变化机制的基本问题
激活和(ii)为单独定制的治疗方案启用闭环治疗应用。
我们建议克服非侵入性刺激(TMS)和
通过应用灵活的RF线圈技术,多模式成像(EEG-FMRI)。我们的总体目标是建造和测试
兼容的集成多模式成像阵列“ RF-EEG CAP”,以允许简单
fMRI和EEG获取与TMS同时获得。为了实现这一目标,我们将采用柔性TMS兼容的RF
线圈元件缝制到与商业MRI兼容的脑电图盖直接集成的特定量身定制的帽子。
与MRI兼容的TMS线圈结合使用以调节正在进行的大脑活动,该系统将启用
对大脑区域之间因果关系的研究,与前所未有的时空无创。
解决方案,从而为大脑计划的主要目标之一做出了贡献。该项目利用了广泛的
RF线圈设计和TMS/多模式成像领域的团队导师和合作者的知识
以及MGH/Martinos中心的MR兼容TMS和EEG系统的可用性。候选人的目标是
为了实现启动她有关开发多模式的独立长期研究计划所需的技能
TMS/EEG/FMRI仪器并将这些方法应用于人脑的研究。提议
项目将完成候选人在设计和建立与TMS兼容的MRI方面的强大专业知识
硬件。主要培训元素是1)扩展申请人的RF工程技能,以优化
拟议的柔性RF线圈技术和2)提高她简单的多模式神经影像/刺激
用于使用脑电图/fMRI/脑电图测试人类神经科学假设的领先项目的专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lucia Isabel Navarro de Lara其他文献
Lucia Isabel Navarro de Lara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lucia Isabel Navarro de Lara', 18)}}的其他基金
Wearable RF-EEG Cap for closed loopTMS/fMRI/EEG Applications
适用于闭环 TMS/fMRI/EEG 应用的可穿戴 RF-EEG 帽
- 批准号:
10688279 - 财政年份:2022
- 资助金额:
$ 5.4万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Alzheimer's Disease Tau Platform Clinical Trial
阿尔茨海默病 Tau 平台临床试验
- 批准号:
10655872 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
Preservation of brain NAD+ as a novel non-amyloid based therapeutic strategy for Alzheimer’s disease
保留大脑 NAD 作为阿尔茨海默病的一种新型非淀粉样蛋白治疗策略
- 批准号:
10588414 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
The Role of Viral Exposure and Age in Alzheimer's Disease Progression
病毒暴露和年龄在阿尔茨海默病进展中的作用
- 批准号:
10717223 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 5.4万 - 项目类别: