Strong many-particle localization by constructed disorder

构造无序的强多粒子定位

基本信息

  • 批准号:
    0555346
  • 负责人:
  • 金额:
    $ 27.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

The goal of the proposed research is to study localization in a many-particle system. Of central interest is on-site localization of all many-particle states, with effective localization length smaller than the intersite distance. Besides localization of stationary states, it is proposed to study the localization lifetime. Bounded sequences of on-site energies will be constructed that efficiently suppress resonant hopping. For these sequences, the single-particle localization transition will be analyzed and sharp bounds on the decay length will be obtained. Strong on-site localization of all many-particle states will be studied for a finite length chain. For an infinite system and an arbitrary number of particles, of primary interest will be the localization lifetime. It will be shown to scale as a high power of the ratio of the bandwidth of site energies to the intersite hopping integral, both for weak and strong particle-particle interaction. For a finite chain, optimization of the energy sequence in order to obtain maximal lifetime for a given bandwidth will be considered. Stability with respect to errors in site energies, the effect of long-range interaction, and the role of decoherence due to coupling to an external reservoir will be studied. In addition to graduate training, carried out jointly by a physicist and a mathematician, the research topic includes undergraduate participation. The students involved in the proposed research should benefit from a weekly interdisciplinary seminar of the Institute for Quantum Sciences organized by the PI at MSU.
该研究的目标是研究多粒子系统中的局部化问题。中心的兴趣是现场本地化的所有多粒子状态,有效的本地化长度小于intersite距离。除了定态的局域化外,还提出了研究定态寿命的方法。有界序列的现场能量将被构建,有效地抑制共振跳跃。对于这些序列,单粒子的本地化过渡将进行分析,并将得到衰减长度的急剧限制。我们将研究有限长链中所有多粒子态的强在位局域化。对于一个无限大的系统和任意数量的粒子,主要的兴趣将是本地化寿命。对于弱的和强的粒子-粒子相互作用,它将被证明与位点能量带宽与位点间跳跃积分之比的高次幂成比例。对于一个有限的链,优化的能量序列,以获得最大的寿命为给定的带宽将被考虑。稳定性方面的错误,在网站的能量,远程相互作用的影响,和退相干的作用,由于耦合到外部水库将进行研究。除了由一名物理学家和一名数学家联合进行的研究生培训外,研究课题还包括本科生的参与。参与拟议研究的学生应受益于密歇根州立大学PI组织的量子科学研究所每周一次的跨学科研讨会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Dykman其他文献

Mark Dykman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Dykman', 18)}}的其他基金

Quantum Dynamics and Fluctuations in Nonlinear Nanomechanical Systems
非线性纳米机械系统中的量子动力学和涨落
  • 批准号:
    1806473
  • 财政年份:
    2018
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Nonlinear Coupling and Relaxation Mechanisms in Micro-mechanics
合作研究:微观力学中的非线性耦合和弛豫机制
  • 批准号:
    1661618
  • 财政年份:
    2017
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
EAGER: Fluctuations and dissipation in nonlinear mesoscopic vibrational systems
EAGER:非线性介观振动系统中的波动和耗散
  • 批准号:
    1514591
  • 财政年份:
    2015
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Workshop on Quantum Information Processing and Nanoscale Systems, Washington, DC; Sept 10-11,2007.
量子信息处理和纳米系统研讨会,华盛顿特区;
  • 批准号:
    0738338
  • 财政年份:
    2007
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Conference on Quantum Information Science
量子信息科学会议
  • 批准号:
    0619244
  • 财政年份:
    2006
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Large Fluctuations in Systems Lacking Time-reversal Symmetry
缺乏时间反转对称性的系统中的大波动
  • 批准号:
    0071059
  • 财政年份:
    2000
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Theory of Large Fluctuations in Systems Away From Thermal Equilibrium
远离热平衡系统的大波动理论
  • 批准号:
    9722057
  • 财政年份:
    1997
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于序列深度显微图像的非织造滤材三维结构重建
  • 批准号:
    61771123
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
  • 批准号:
    2247846
  • 财政年份:
    2023
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Charting a New Paradigm for Large Non-Exchangeable Multi-Agent and Many-Particle Systems
为大型不可交换多代理和多粒子系统绘制新范式
  • 批准号:
    2205694
  • 财政年份:
    2022
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
Spatiotemporal structure and rheological property of many body soft particle flow
多体软颗粒流时空结构及流变特性
  • 批准号:
    21K13891
  • 财政年份:
    2021
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Caustics in Many-Particle Quantum Dynamics: Light-cones and Catastrophes
多粒子量子动力学中的焦散:光锥和灾难
  • 批准号:
    518747-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum dynamics in closed and open many-particle systems
封闭和开放多粒子系统中的量子动力学
  • 批准号:
    2397290
  • 财政年份:
    2020
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Studentship
CAREER: Understanding Invariant Convolutional Neural Networks through Many Particle Physics
职业:通过许多粒子物理学理解不变卷积神经网络
  • 批准号:
    1845856
  • 财政年份:
    2019
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Caustics in Many-Particle Quantum Dynamics: Light-cones and Catastrophes
多粒子量子动力学中的焦散:光锥和灾难
  • 批准号:
    518747-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Exotic Phases and Their Interfaces in Correlated Many-Particle Systems
相关多粒子系统中的奇异相及其界面
  • 批准号:
    1932796
  • 财政年份:
    2019
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
The Many-Particle Physics of Lasing in Two-Dimensional Transition-Metal Dichalcogenides
二维过渡金属二硫化物中激光的多粒子物理
  • 批准号:
    1839570
  • 财政年份:
    2019
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
  • 批准号:
    1838371
  • 财政年份:
    2018
  • 资助金额:
    $ 27.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了