Strong many-particle localization by constructed disorder
构造无序的强多粒子定位
基本信息
- 批准号:0555346
- 负责人:
- 金额:$ 27.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the proposed research is to study localization in a many-particle system. Of central interest is on-site localization of all many-particle states, with effective localization length smaller than the intersite distance. Besides localization of stationary states, it is proposed to study the localization lifetime. Bounded sequences of on-site energies will be constructed that efficiently suppress resonant hopping. For these sequences, the single-particle localization transition will be analyzed and sharp bounds on the decay length will be obtained. Strong on-site localization of all many-particle states will be studied for a finite length chain. For an infinite system and an arbitrary number of particles, of primary interest will be the localization lifetime. It will be shown to scale as a high power of the ratio of the bandwidth of site energies to the intersite hopping integral, both for weak and strong particle-particle interaction. For a finite chain, optimization of the energy sequence in order to obtain maximal lifetime for a given bandwidth will be considered. Stability with respect to errors in site energies, the effect of long-range interaction, and the role of decoherence due to coupling to an external reservoir will be studied. In addition to graduate training, carried out jointly by a physicist and a mathematician, the research topic includes undergraduate participation. The students involved in the proposed research should benefit from a weekly interdisciplinary seminar of the Institute for Quantum Sciences organized by the PI at MSU.
该研究的目标是研究多粒子系统中的局部化问题。中心的兴趣是现场本地化的所有多粒子状态,有效的本地化长度小于intersite距离。除了定态的局域化外,还提出了研究定态寿命的方法。有界序列的现场能量将被构建,有效地抑制共振跳跃。对于这些序列,单粒子的本地化过渡将进行分析,并将得到衰减长度的急剧限制。我们将研究有限长链中所有多粒子态的强在位局域化。对于一个无限大的系统和任意数量的粒子,主要的兴趣将是本地化寿命。对于弱的和强的粒子-粒子相互作用,它将被证明与位点能量带宽与位点间跳跃积分之比的高次幂成比例。对于一个有限的链,优化的能量序列,以获得最大的寿命为给定的带宽将被考虑。稳定性方面的错误,在网站的能量,远程相互作用的影响,和退相干的作用,由于耦合到外部水库将进行研究。除了由一名物理学家和一名数学家联合进行的研究生培训外,研究课题还包括本科生的参与。参与拟议研究的学生应受益于密歇根州立大学PI组织的量子科学研究所每周一次的跨学科研讨会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Dykman其他文献
Mark Dykman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Dykman', 18)}}的其他基金
Quantum Dynamics and Fluctuations in Nonlinear Nanomechanical Systems
非线性纳米机械系统中的量子动力学和涨落
- 批准号:
1806473 - 财政年份:2018
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Collaborative Research: Nonlinear Coupling and Relaxation Mechanisms in Micro-mechanics
合作研究:微观力学中的非线性耦合和弛豫机制
- 批准号:
1661618 - 财政年份:2017
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
EAGER: Fluctuations and dissipation in nonlinear mesoscopic vibrational systems
EAGER:非线性介观振动系统中的波动和耗散
- 批准号:
1514591 - 财政年份:2015
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Workshop on Quantum Information Processing and Nanoscale Systems, Washington, DC; Sept 10-11,2007.
量子信息处理和纳米系统研讨会,华盛顿特区;
- 批准号:
0738338 - 财政年份:2007
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Conference on Quantum Information Science
量子信息科学会议
- 批准号:
0619244 - 财政年份:2006
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Large Fluctuations in Systems Lacking Time-reversal Symmetry
缺乏时间反转对称性的系统中的大波动
- 批准号:
0071059 - 财政年份:2000
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Theory of Large Fluctuations in Systems Away From Thermal Equilibrium
远离热平衡系统的大波动理论
- 批准号:
9722057 - 财政年份:1997
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于序列深度显微图像的非织造滤材三维结构重建
- 批准号:61771123
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
- 批准号:
2247846 - 财政年份:2023
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Charting a New Paradigm for Large Non-Exchangeable Multi-Agent and Many-Particle Systems
为大型不可交换多代理和多粒子系统绘制新范式
- 批准号:
2205694 - 财政年份:2022
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Spatiotemporal structure and rheological property of many body soft particle flow
多体软颗粒流时空结构及流变特性
- 批准号:
21K13891 - 财政年份:2021
- 资助金额:
$ 27.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Caustics in Many-Particle Quantum Dynamics: Light-cones and Catastrophes
多粒子量子动力学中的焦散:光锥和灾难
- 批准号:
518747-2018 - 财政年份:2020
- 资助金额:
$ 27.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum dynamics in closed and open many-particle systems
封闭和开放多粒子系统中的量子动力学
- 批准号:
2397290 - 财政年份:2020
- 资助金额:
$ 27.4万 - 项目类别:
Studentship
CAREER: Understanding Invariant Convolutional Neural Networks through Many Particle Physics
职业:通过许多粒子物理学理解不变卷积神经网络
- 批准号:
1845856 - 财政年份:2019
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Caustics in Many-Particle Quantum Dynamics: Light-cones and Catastrophes
多粒子量子动力学中的焦散:光锥和灾难
- 批准号:
518747-2018 - 财政年份:2019
- 资助金额:
$ 27.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Exotic Phases and Their Interfaces in Correlated Many-Particle Systems
相关多粒子系统中的奇异相及其界面
- 批准号:
1932796 - 财政年份:2019
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
The Many-Particle Physics of Lasing in Two-Dimensional Transition-Metal Dichalcogenides
二维过渡金属二硫化物中激光的多粒子物理
- 批准号:
1839570 - 财政年份:2019
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
- 批准号:
1838371 - 财政年份:2018
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant














{{item.name}}会员




