Charting a New Paradigm for Large Non-Exchangeable Multi-Agent and Many-Particle Systems
为大型不可交换多代理和多粒子系统绘制新范式
基本信息
- 批准号:2205694
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project will develop a new framework for the study of large systems of interacting "agents" or "particles". The main goal is to obtain a reduction in complexity for systems with a very large number of agents, by replacing exact interactions with a notion of mean field. Existing theories, to justify this approximation, typically assume that the agents are identical or at least indistinguishable. This assumption can be valid when considering classical applications in Physics, such as the dynamics of electrons under an electrostatic potential. The investigator will introduce new approaches to remove the assumption of indistinguishable particles or agents while still involving realistic singular interactions: This will allow to consider more complex applications such as multi-species models in Physics and models for the dynamics of networks of biological neurons. The project provides training research opportunities for graduate students. Mathematically speaking having non-identical particles or agents changes the structure of the systems. First, it makes them non-symmetric and non-exchangeable, which has deep consequences when trying to define so-called observables, such as the joint law of a sub-system. It also breaks some of the cancellation effects, for example the anti-symmetry of the interaction, that many current methods relied on to handle singular interactions. The project introduces novel methods to bypass those issues such as new duality formulations and an extended notion of marginal.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将为研究相互作用的“代理人”或“粒子”的大型系统开发一个新的框架。主要目标是通过用平均场的概念取代精确的相互作用,来降低具有大量代理的系统的复杂性。现有的理论,为了证明这种近似,通常假设代理人是相同的或至少是不可区分的。这个假设在考虑物理学中的经典应用时是有效的,例如静电势下的电子动力学。研究人员将引入新的方法来消除不可区分的粒子或代理的假设,同时仍然涉及现实的奇异相互作用:这将允许考虑更复杂的应用,如物理学中的多物种模型和生物神经元网络动力学模型。该项目为研究生提供培训研究机会。从数学上讲,拥有不同的粒子或代理会改变系统的结构。首先,它使它们非对称和不可交换,这在试图定义所谓的可观测量时具有深刻的后果,例如子系统的联合定律。它还打破了一些抵消效应,例如相互作用的反对称性,许多当前方法依赖于处理奇异相互作用。该项目引入了新的方法来绕过这些问题,如新的二元公式和边际的扩展概念。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Collective motion driven by nutrient consumption
营养消耗驱动的集体运动
- DOI:10.3233/asy-221820
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Jabin, Pierre-Emmanuel;Perthame, Benoît
- 通讯作者:Perthame, Benoît
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pierre-Emmanuel Jabin其他文献
Time-asymptotic convergence rates towards discrete steady states of nonlocal selection-mutation model
非局部选择变异模型离散稳态的时间渐近收敛率
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.5
- 作者:
Wenli Cai;Pierre-Emmanuel Jabin;Hailiang Liu - 通讯作者:
Hailiang Liu
Mean-field derivation of Landau-like equations
朗道型方程的平均场推导
- DOI:
10.1016/j.aml.2024.109195 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:2.800
- 作者:
José Antonio Carrillo;Shuchen Guo;Pierre-Emmanuel Jabin - 通讯作者:
Pierre-Emmanuel Jabin
Quantitative estimates of propagation of chaos for stochastic systems with $$W^{-1,\infty }$$ kernels
- DOI:
10.1007/s00222-018-0808-y - 发表时间:
2018-07-06 - 期刊:
- 影响因子:3.600
- 作者:
Pierre-Emmanuel Jabin;Zhenfu Wang - 通讯作者:
Zhenfu Wang
Pierre-Emmanuel Jabin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pierre-Emmanuel Jabin', 18)}}的其他基金
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219397 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Quantifying Chaos, Correlations, and Oscillations in Multi-Agent Systems and Advection Equations
量化多智能体系统和平流方程中的混沌、相关性和振荡
- 批准号:
2049020 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Quantifying Chaos, Correlations, and Oscillations in Multi-Agent Systems and Advection Equations
量化多智能体系统和平流方程中的混沌、相关性和振荡
- 批准号:
1908739 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A novel paradigm for nonlinear convection models and large systems of particles
非线性对流模型和大型粒子系统的新范例
- 批准号:
1614537 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Many Particles' Systems: Theory and Applications
多粒子系统:理论与应用
- 批准号:
1312142 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
FDSS Track 1: A New Paradigm for Faculty Development in Geospace Science at Georgia Tech
FDSS Track 1:佐治亚理工学院地球空间科学教师发展的新范式
- 批准号:
2347873 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Big time crystals: a new paradigm in condensed matter
大时间晶体:凝聚态物质的新范例
- 批准号:
DP240101590 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Targeting Inhibitory kappa B kinase alpha (IKKalpha): a new treatment paradigm for inflammatory-driven cancers
靶向抑制性 kappa B 激酶 alpha (IKKalpha):炎症驱动的癌症的新治疗范例
- 批准号:
MR/Y015479/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
- 批准号:
2347627 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
A new paradigm of prepeulse inhibition and its clinical use
预脉冲抑制的新范例及其临床应用
- 批准号:
23K07026 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Scale invariance: A new paradigm for particle physics and cosmology
尺度不变性:粒子物理学和宇宙学的新范式
- 批准号:
DP220101721 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
Large Language Models for Query Optimisation: A New Paradigm in Database Systems
用于查询优化的大型语言模型:数据库系统的新范式
- 批准号:
2726025 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Studentship
Inclusive Cross-sensory Social Play: Towards a new paradigm of assistive technology for early development of blind and visually impaired children
包容性跨感官社交游戏:为盲人和视障儿童的早期发展提供辅助技术的新范式
- 批准号:
EP/Y023676/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
SBIR PHASE II, TOPIC 429: A NEW PARADIGM FOR AUTOLOGOUS AND ALLOGENEIC CELL THERAPY MANUFACTURING
SBIR 第二阶段,主题 429:自体和同种异体细胞治疗制造的新范式
- 批准号:
10976161 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
RUI: A New Paradigm for AGN Obscuration: Observational Constraints for Dynamic Torus Models
RUI:AGN 遮蔽的新范式:动态环面模型的观测约束
- 批准号:
2308393 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant