Many-particle Systems with Singular Interactions: Statistical Mechanics and Mean-field Dynamics
具有奇异相互作用的多粒子系统:统计力学和平均场动力学
基本信息
- 批准号:2247846
- 负责人:
- 金额:$ 70.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mathematical analysis can help understand and derive effective laws or effective theories emerging from the collective behavior of many particles. This project is particularly interested in such rigorous derivations in the case where the many particles are interacting with singular forces, such as the Coulomb force, which is the fundamental electric force of nature. Understanding the statistical behavior of such systems, as well as their dynamical laws, is directly related to fundamental questions in several areas of physics and applied science: the Coulomb gas in statistical physics, models of plasmas in astrophysics and plasma physics, quantum mechanics models, analysis of random matrices (itself initially motivated by the analysis of the spectrum of large atoms), phase transitions in condensed matter physics (superconductors and superfluids), but also collective behavior in biology, social sciences, and neural networks. Recent progress has been made bringing forward new tools from analysis and probability to analyze such questions, with or without randomness, but much remains to be done. The project focuses in particular on two directions. The first is obtaining convergence results for dynamics that are valid for all time and with an explicit error rate, thus useful in practice. The second is in understanding the famous Kosterlitz-Thouless phase transition in the so-called "two component plasma". This is a two-dimensional gas made of positively and negatively charged particles with electrostatic interaction. Positive particles and negative particles attract and, depending on the temperature, they pair into collapsed dipoles (at low temperature) or behave as free charges (at high temperature). What was an initial surprise is that, according to the Nobel-prize winning prediction of Berezinsky, Kosterlitz, and Thouless, a third, intermediate and new state of matter exists, with quite unusual behavior that is explained by the formation of vortices. Much remains to be rigorously analyzed about this phase transition, and the project hopes to advance this theoretical understanding. The broader impacts of the project stem from its mentoring and training component, expository work, communication and outreach to broader audiences, as well as involvement with the community in various roles. The effective or mean-field behavior of systems with singular interactions, in particular Coulombic ones, has been understood for several situations of dynamics and statistical mechanics. In the case of equilibrium statistical mechanics, this consists in examining the behavior of the particle density under the canonical Gibbs measure, and this has been understood via large deviations techniques and potential theory. In the purely repulsive Coulomb case, much more has been understood, including the fluctuations around the mean-field limit and the microscopic behavior of the points. The project further extends this understanding by proving the connection to the Gaussian Multiplicative Chaos in the 2D Coulomb case, and by analyzing non-Coulomb Riesz repulsive interactions, which present further challenges. Much less has been understood about the case of a neutral plasma of oppositely charged particles (which then attract), which makes sense as a two-dimensional system. In particular, the project will turn to understanding the fine behavior of such a two-component Coulomb gas, in which a very particular phase transition, the Berezinski-Kosterlitz-Thouless phase transition, is predicted to happen. Bringing in an electrostatic and large deviations-based approach to this topic will provide a new approach to such problems, alternate to the renormalization methods of quantum field theory, and allow to understand the model below and above the critical temperature, with characterizations of the formation of dipoles and multipoles which explain the phase transition, and analysis of the fluctuations. The last main part of the project turns to gradient flow, conservative dynamics and Newtonian dynamics of systems with Coulomb or Riesz repulsive or attractive interactions. Thanks in particular to the recent modulated energy and modulated free energy methods, the mean-field limit can be derived, but much less has been understood beyond this than in the statistical mechanics setting. The project will allow us to understand whether and when global-in-time convergence holds, questions of instability in the case with attraction, and fluctuations and large deviations away from the mean-field behavior, thus providing much more precise information on such dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学分析可以帮助理解和推导出从许多粒子的集体行为中产生的有效定律或有效理论。该项目特别感兴趣的是,在许多粒子与奇异力相互作用的情况下,这种严格的推导,例如库仑力,这是自然界的基本电力。了解这些系统的统计行为,以及它们的动力学定律,直接关系到物理学和应用科学的几个领域的基本问题:统计物理学中的库仑气体,天体物理学和等离子体物理学中的等离子体模型,量子力学模型,随机矩阵分析(最初是由对大原子光谱的分析激发的),凝聚态物理学中的相变(超导体和超流体),而且在生物学,社会科学和神经网络的集体行为。最近已经取得了进展,提出了新的工具,从分析和概率来分析这些问题,有或没有随机性,但仍有许多工作要做。该项目特别侧重于两个方向。首先是获得收敛结果的动态是有效的所有时间和明确的错误率,从而在实践中有用。第二个是理解所谓“双组分等离子体”中著名的科斯特利茨-图利斯相变。这是一种二维气体,由带正电荷和负电荷的粒子通过静电相互作用组成。正粒子和负粒子相互吸引,根据温度的不同,它们配对成坍缩的偶极子(在低温下)或表现为自由电荷(在高温下)。最初令人惊讶的是,根据Berezinsky,Kosterlitz和Wavelless的诺贝尔奖获得者的预测,存在第三种,中间和新的物质状态,具有非常不寻常的行为,可以通过涡旋的形成来解释。关于这种相变还有很多东西需要严格分析,该项目希望推进这种理论理解。该项目的更广泛影响来自其辅导和培训部分、临时工作、与更广泛受众的沟通和外联,以及以各种角色参与社区。 具有奇异相互作用的系统的有效场或平均场行为,特别是库仑相互作用的系统,已经在动力学和统计力学的几种情况下得到了理解。在平衡统计力学的情况下,这包括检查粒子密度在正则吉布斯测度下的行为,这已经通过大偏差技术和势理论得到了理解。在纯库仑排斥的情况下,人们已经了解了更多,包括平均场极限周围的波动和点的微观行为。该项目进一步扩展了这种理解,证明了在2D库仑情况下与高斯乘性混沌的联系,并分析了非库仑Riesz排斥相互作用,这带来了进一步的挑战。对于由带相反电荷的粒子(它们相互吸引)组成的中性等离子体的情况,人们了解得少得多,而中性等离子体作为一个二维系统是有意义的。特别是,该项目将转向理解这种双组分库仑气体的精细行为,其中一个非常特殊的相变,Berezinski-Kosterlitz-无相变,预计会发生。引入一个静电和大偏差为基础的方法,这一主题将提供一个新的方法来解决这些问题,替代量子场论的重整化方法,并允许理解低于和高于临界温度的模型,与偶极子和多极子的形成,解释相变的表征,和波动的分析。该项目的最后一个主要部分转向梯度流,保守动力学和库仑或Riesz排斥或吸引相互作用系统的牛顿动力学。特别是由于最近的调制能量和调制自由能的方法,平均场极限可以推导出来,但在此之外的理解比在统计力学设置少得多。该项目将使我们了解全球时间收敛是否以及何时成立,吸引力情况下的不稳定性问题,以及波动和偏离平均场行为的大偏差,从而提供有关此类动态的更精确信息。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sylvia Serfaty其他文献
Relative entropy and modulated free energy without confinement via self-similar transformation
通过自相似变换获得无限制的相对熵和调制自由能
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Matthew Rosenzweig;Sylvia Serfaty - 通讯作者:
Sylvia Serfaty
A two scale $$\Gamma $$ -convergence approach for random non-convex homogenization
随机非凸均匀化的双尺度 Γ 收敛方法
- DOI:
10.1007/s00526-017-1249-y - 发表时间:
2017-10-06 - 期刊:
- 影响因子:2.000
- 作者:
Leonid Berlyand;Etienne Sandier;Sylvia Serfaty - 通讯作者:
Sylvia Serfaty
Sylvia Serfaty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sylvia Serfaty', 18)}}的其他基金
Coulomb Gases and Vortex Systems: Two-Dimensional Physics and Beyond
库仑气体和涡流系统:二维物理及其他
- 批准号:
2000205 - 财政年份:2020
- 资助金额:
$ 70.48万 - 项目类别:
Standard Grant
Large systems with repulsive interactions in statistical mechanics, condensed matter physics and PDE
统计力学、凝聚态物理和偏微分方程中具有排斥相互作用的大型系统
- 批准号:
1700278 - 财政年份:2017
- 资助金额:
$ 70.48万 - 项目类别:
Continuing Grant
CAREER: Statics and Dynamics of Singularities In Some Models From Material Science
职业:材料科学某些模型中奇点的静力学和动力学
- 批准号:
0239121 - 财政年份:2003
- 资助金额:
$ 70.48万 - 项目类别:
Continuing Grant
相似国自然基金
环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
- 批准号:11905220
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
- 批准号:31970754
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
酵母RNase MRP的结构及催化机制研究
- 批准号:31900929
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
- 批准号:21902147
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
微流控技术构筑分子型胶体光子晶体微珠及其在光催化领域的应用研究
- 批准号:21703197
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
引入昆虫复视机制的粒子滤波算法及其视觉伺服应用研究
- 批准号:61175096
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
电子聚焦电场增强等离子体离子注入/沉积基本理论研究
- 批准号:11075012
- 批准年份:2010
- 资助金额:48.0 万元
- 项目类别:面上项目
微复型过程中聚合物流动填充机理的可视化实验分析
- 批准号:50975227
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
- 批准号:30560052
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Charting a New Paradigm for Large Non-Exchangeable Multi-Agent and Many-Particle Systems
为大型不可交换多代理和多粒子系统绘制新范式
- 批准号:
2205694 - 财政年份:2022
- 资助金额:
$ 70.48万 - 项目类别:
Standard Grant
Quantum dynamics in closed and open many-particle systems
封闭和开放多粒子系统中的量子动力学
- 批准号:
2397290 - 财政年份:2020
- 资助金额:
$ 70.48万 - 项目类别:
Studentship
Exotic Phases and Their Interfaces in Correlated Many-Particle Systems
相关多粒子系统中的奇异相及其界面
- 批准号:
1932796 - 财政年份:2019
- 资助金额:
$ 70.48万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
- 批准号:
1838371 - 财政年份:2018
- 资助金额:
$ 70.48万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Many Particle Systems
非线性偏微分方程和许多粒子系统
- 批准号:
1904139 - 财政年份:2018
- 资助金额:
$ 70.48万 - 项目类别:
Standard Grant
Microscopic Theory of Nuclear Many-Particle Systems
核多粒子系统的微观理论
- 批准号:
1714042 - 财政年份:2017
- 资助金额:
$ 70.48万 - 项目类别:
Standard Grant
Quantum Information in Many-Particle Systems
多粒子系统中的量子信息
- 批准号:
261370-2013 - 财政年份:2017
- 资助金额:
$ 70.48万 - 项目类别:
Discovery Grants Program - Individual
Dynamical properties of one dimensional strongly correlated many-particle systems
一维强相关多粒子系统的动力学特性
- 批准号:
1947733 - 财政年份:2017
- 资助金额:
$ 70.48万 - 项目类别:
Studentship
Maximum-entropy method applied to the many-particle hierarchy problem in quantum-dot-microcavity systems
最大熵方法应用于量子点微腔系统中的多粒子层次问题
- 批准号:
327790415 - 财政年份:2016
- 资助金额:
$ 70.48万 - 项目类别:
Research Grants
Effective One-Particle Equations for Correlated Many-Particle-(Coulomb) Systems: Derivation and Properties
相关多粒子(库仑)系统的有效单粒子方程:推导和性质
- 批准号:
318342445 - 财政年份:2016
- 资助金额:
$ 70.48万 - 项目类别:
Research Grants