RUI - The Physics of Coupled Atomic-Molecular Condensate Systems
RUI - 耦合原子分子凝聚系统的物理
基本信息
- 批准号:0555646
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary objective of this proposal is to explore the physics of multi-component condensatescontaining both atomic and molecular species, one of the most rapidly evolving areas of physics research. Of particular interest is the two-color Raman photo-association model (or its Feshbach equivalence), also known as the nonlinear system, where a pair of stable atoms is either photo-associated (or magnetoassociated) into an unstable excited molecule, which is subsequently driven into a stable (ground) molecular state by a laser field. The nonlinear system supports a coherent population trapping (CPT) or dark state, which is a superposition of atomic and stable molecular states. Such a CPT state facilitates the stimulated Raman adiabatic passage (STIRAP), which utilizes a counterintuitive pulse sequence to coherently convert atoms into stable molecules while avoiding the decoherence associated with the particle loss in the excited state.The technique of STIRAP will be generalized from recent work [H. Y. Ling, H. Pu, and B.Seaman, Phys. Rev. Lett. 93, 250403 (2004)] to the nonlinear systems, where both particle collisions and trap potentials cannot be ignored. The adiabatic condition, which sets the limit to the powers and the widths of the laser pulses for an efficient STIRAP, will be studied in connection with the collective excitation modes of the CPT state. Also studied is the question of how to prepare the system, through quantum state engineering involving laser light, into the nonlinear CPT state in the presence of trap potentials, and the question of how to design more robust STIRAPs capable of efficiently converting atoms into molecules under quite relaxed CPT conditions. The possibility of creating, in the nonlinear system, a coherent superposition of an atomic condensate and a molecular vortex will also be studied - such a superposition represents a new and relatively unexplored quantum state of matter, unique of the coupled atomic-molecular condensate systems. In contrast to two bosonic atoms, which can only form a molecule tightly bound in real space, two fermionic atoms have the additional opportunity of forming a Bardeen-Cooper-Schrieffer (BCS) pair bound in momentum space. This leads to the final area of the proposal to explore the coupled fermionic atomic-molecular condensate systems for studies related to the formation of BCS atom pairs and to the BEC-BCS crossover - the transition from condensates of mainly bound BECmolecules to that of BCS pairs.
本提案的主要目的是探索包含原子和分子物种的多组分冷凝物的物理学,这是物理学研究中发展最快的领域之一。特别令人感兴趣的是双色拉曼光缔合模型(或其Feshbach等效),也称为非线性系统,其中一对稳定的原子要么是光缔合(或磁缔合)成一个不稳定的受激分子,随后被激光场驱动成一个稳定的(基态)分子。非线性系统支持相干种群捕获(CPT)或暗态,这是原子和稳定分子状态的叠加。这种CPT状态有利于受激拉曼绝热通道(STIRAP),该通道利用反直觉的脉冲序列将原子相干地转化为稳定的分子,同时避免了激发态中粒子损失带来的退相干。STIRAP技术将从最近的工作中得到推广[H]。林玉玲,朴慧,b.s seaman,物理学家。在非线性系统中,粒子碰撞和阱势都不能被忽略。绝热条件决定了激光脉冲的功率和宽度,并将与CPT态的集体激发模式联系起来研究。还研究了如何通过涉及激光的量子态工程在存在陷阱电位的情况下将系统制备为非线性CPT状态的问题,以及如何设计更健壮的stirap能够在相当宽松的CPT条件下有效地将原子转化为分子的问题。在非线性系统中创建原子凝聚和分子漩涡的相干叠加的可能性也将被研究-这种叠加代表了一种新的和相对未被探索的物质量子态,这是耦合原子-分子凝聚系统的独特之处。两个玻色子原子在现实空间中只能形成紧密结合的分子,而两个费米子原子在动量空间中有额外的机会形成Bardeen-Cooper-Schrieffer (BCS)对。这就引出了本文的最后一个领域,即探索耦合费米子原子-分子凝聚体系,以研究与BCS原子对的形成和BEC-BCS交叉有关的问题——从主要结合的bec分子凝聚物到BCS对凝聚物的转变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hong Ling其他文献
A subdomain synthesis method for global analysis of nonlinear dynamical systems based on cell mapping
基于元胞映射的非线性动力系统全局分析子域综合方法
- DOI:
10.1007/s11071-018-4592-4 - 发表时间:
2019 - 期刊:
- 影响因子:5.6
- 作者:
Li Zigang;Jiang Jun;Li Jing;Hong Ling;Li Ming - 通讯作者:
Li Ming
Dynamic Response and Stability Analysis with Newton Harmonic Balance Method for Nonlinear Oscillating Dielectric Elastomer Balloons
非线性振荡介电弹性体气球的牛顿谐波平衡法动态响应和稳定性分析
- DOI:
10.1142/s0219455418501523 - 发表时间:
2018-11 - 期刊:
- 影响因子:3.6
- 作者:
Tang Dafeng;Lim C. W.;Hong Ling;Jiang Jun;Lai S. K. - 通讯作者:
Lai S. K.
Inter-organizational trust and supply chain Flexibility: From a relational view of the firm
组织间信任和供应链灵活性:从公司的关系角度来看
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Fuchun Zhao;Hong Ling;Zhengchuan Xu - 通讯作者:
Zhengchuan Xu
Cytoplasmic m1A reader YTHDF3 inhibits trophoblast invasion by downregulation of m1A methylated IGF1R
细胞质 m1A 阅读器 YTHDF3 通过下调 m1A 甲基化 IGF1R 抑制滋养层侵袭
- DOI:
10.1038/s41421-020-0144-4 - 发表时间:
2020 - 期刊:
- 影响因子:33.5
- 作者:
Zheng Qingliang;Gan Haili;Yang Fenglian;Yao Yongli;Hao Fan;Hong Ling;Jin Liping - 通讯作者:
Jin Liping
Numerical investigations of wind and thermal environment in 2D scaled street canyons with various aspect ratios and solar wall heating
不同纵横比的二维街道峡谷和太阳能壁加热的风和热环境数值研究
- DOI:
10.1016/j.buildenv.2020.107525 - 发表时间:
2021-03 - 期刊:
- 影响因子:7.4
- 作者:
Lan Chen;Jian Hang;Guanwen Chen;Shanhe Liu;Yuanyuan Lin;Magnus Mattsson;Mats S;berg;Hong Ling - 通讯作者:
Hong Ling
Hong Ling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hong Ling', 18)}}的其他基金
RUI: Coupled Atom - Polar Molecule Condensate Systems: A Theoretical Adventure
RUI:耦合原子 - 极性分子凝聚系统:理论冒险
- 批准号:
0855639 - 财政年份:2009
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
RUI - Amplification of Matter Waves by Optical and Matter Wave Mixing
RUI - 通过光和物质波混合放大物质波
- 批准号:
0307359 - 财政年份:2003
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Variance reduction for coupled neutron-photon physics calculations
中子-光子耦合物理计算的方差减少
- 批准号:
2889660 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
Understanding the Critical Role of Seasonality for El Niño/Southern Oscillation (ENSO) Variability, Using Empirical Stochastic-Dynamic Models and Physics-Based Coupled Models
使用经验随机动态模型和基于物理的耦合模型了解季节性对厄尔尼诺/南方涛动 (ENSO) 变异性的关键作用
- 批准号:
2311162 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
ECLIPSE/Collaborative Research: Unravelling the Coupled Physics of Piezoelectric and Plasma Behavior in Piezoelectric Stimulated Plasma Sources
ECLIPSE/合作研究:揭示压电受激等离子体源中压电和等离子体行为的耦合物理
- 批准号:
2206406 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
ECLIPSE/Collaborative Research: Unravelling the Coupled Physics of Piezoelectric and Plasma Behavior in Piezoelectric Stimulated Plasma Sources
ECLIPSE/合作研究:揭示压电受激等离子体源中压电和等离子体行为的耦合物理
- 批准号:
2206420 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
Resurgence theory and its application to strongly coupled physics
复兴理论及其在强耦合物理中的应用
- 批准号:
21K03558 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coupled map lattice for phase inversion from cream to butter: towards understanding food texture formation based on polymer and nonlinear physics
用于从奶油到黄油的相转化的耦合图晶格:基于聚合物和非线性物理学理解食物质地的形成
- 批准号:
20J12074 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Quantum Many-Body Physics in Spin-Orbit Coupled Bose Gases
自旋轨道耦合玻色气体中的量子多体物理
- 批准号:
2012185 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
Multi-physics reactor optimisation coupled with uncertainty quantification
多物理反应堆优化与不确定性量化相结合
- 批准号:
2462437 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别:
Studentship
Coupled Kinetic Physics of Protons and Electrons in the Solar Wind
太阳风中质子和电子的耦合动力学物理
- 批准号:
1842643 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
New physics with strongly correlated and spin-orbit-coupled electrons
具有强相关和自旋轨道耦合电子的新物理学
- 批准号:
FT180100211 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
ARC Future Fellowships