Knots in Washington XXI: Skein Modules, Khovanov Homology and Hochschild Homology
华盛顿结 XXI:绞纱模块、Khovanov 同源性和 Hochschild 同源性
基本信息
- 批准号:0555648
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-01-01 至 2006-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0555648Principal Investigator: Jozef H. PrzytyckiThis award provides partial support for participants of the 21stconference in the very successful ``Knots in Washington''series. This meeting is devoted to Skein Modules, KhovanovHomology and its relation to Hochschild Homology. ``Khovanovhomology'' is a new development in quantum topology that emergedin the last several years. It is a generalization of the Jonesand Homflypt polynomials of links to homologies of certain chaincomplexes. These homologies turn out to be significantlystronger than the original invariants. Khovanov's ideas were alsoapplied to the polynomial invariants of graphs, as well asKauffman bracket skein module of some 3-manifolds. One of themost recent developments is Przytycki's observation that Khovanovhomology (or its comultiplication-free variant developed byHelme-Guizon and Rong) can be interpreted as Hochschild homologyof underlying algebras. This shows how seemingly distant branchesof mathematics can be put together.Low dimensional topology studies shapes of three and fourdimensional spaces. These dimensions are of particular interestto us because they are the dimensions of our space and ourspace-time. Knot theory is a subfield of low dimensionaltopology, which studies the knottedness in our space. One of themain goals of knot theory is to distinguish knotted objects. Thisis often done by means of the so called "knot invariants,"functions that replace geometric objects, such as knots, withthose that are easier to compare. Over the past two decades,there have been a flourish of new invariants in low dimensionaltopology, boosted by ideas from gauge theory, quantum algebras,and mathematical physics. In particular, a new invariant forknots, developed by Khovanov using ideas from homologicalalgebra, has sparked a great deal of interest recently. Thepurpose of the Knots in Washington Conferences is to bringtogether the researchers of the field, including establishedmathematicians as well as graduate students and recent PhDs, todiscuss the state of the art of the subject.
摘要奖:DMS-0555648首席研究员:Jozef H.Przytyck这个奖项为第21届会议的与会者提供了部分支持,这是非常成功的“在华盛顿的结”系列。这次会议致力于Skein模块,KhovanovHomology及其与Hochschild同调的关系。“KhovanovHomology”是过去几年量子拓扑学中出现的新发展。它是某些链复形同调的链环的Jones和Homflypt多项式的推广。事实证明,这些同调比原来的不变量强得多。Khovanov的思想也被应用于图的多项式不变量,以及一些三维流形的Kauffman括号斜线模。最新的发展之一是Przytycki观察到Khovanov同调(或由Helme-Guizon和Rong开发的无余乘变体)可以解释为基础代数的Hochschild同调。这说明了数学中看似遥远的分支是如何组合在一起的。低维拓扑学研究三维和四维空间的形状。我们对这些维度特别感兴趣,因为它们是我们的空间和我们时空的维度。结点理论是低维拓扑学的一个子域,它研究我们空间中的结点。纽结理论的主要目的之一是区分纽结对象。这通常是通过所谓的“纽结不变量”来完成的,这些函数用更容易比较的几何对象来代替几何对象,如纽结。在过去的二十年里,在规范理论、量子代数和数学物理的思想的推动下,低维拓扑中的新不变量蓬勃发展。特别是,Khovanov利用同调代数的思想提出了一种新的不变量ForNots,最近引起了人们的极大兴趣。华盛顿会议的目的是将该领域的研究人员聚集在一起,包括知名数学家以及研究生和新近的博士,讨论该学科的最新进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jozef Przytycki其他文献
Linking numbers in rational homology 3-spheres, cyclic branched covers and infinite cyclic covers
有理同源 3 球体、循环分支覆盖和无限循环覆盖中的连接数
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Jozef Przytycki;Akira Yaushara - 通讯作者:
Akira Yaushara
Jozef Przytycki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jozef Przytycki', 18)}}的其他基金
Knots in Washington XLI: a Conference Series on Knot Theory and its Ramifications; November 13-15, 2015
华盛顿的结 XLI:关于结理论及其衍生的会议系列;
- 批准号:
1543617 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Knots in Washington: Conferences on Knot Theory and its Ramifications
华盛顿的结:结理论及其影响的会议
- 批准号:
1137422 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Knots in Poland III; the conference on Knot Theory and its Ramifications
波兰的结 III;
- 批准号:
1034753 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
Knots in Washington: Conferences on Knot Theory and its Ramifications 2008-2010
华盛顿结:结理论及其影响 2008-2010 年会议
- 批准号:
0817858 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Knots in Washington XVIII: Khovanov homology
华盛顿结十八:霍瓦诺夫同源性
- 批准号:
0432284 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
Topics in Algebraic Topology Based on Knots
基于结的代数拓扑专题
- 批准号:
9808955 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Washington Community and Technical College Consortium for Undergraduate Research and Equity
华盛顿社区和技术学院本科生研究和公平联盟
- 批准号:
2336652 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Participant Support for the Kahramanmaraş, Turkey, Earthquake Sequence One-year Anniversary Programming at the 2024 EERI Annual Meeting; Seattle, Washington; 9-12 April 2024
在 2024 年 EERI 年会上为土耳其卡赫拉曼马拉地震一周年纪念活动提供支持;
- 批准号:
2418579 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Materials Genome Initiative (MGI) Biennial Principal Investigator Workshop; Washington, DC; July 30-31, 2024
会议:材料基因组计划(MGI)两年一次的首席研究员研讨会;
- 批准号:
2422384 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Student Support: Ninth North American Industrial Engineering and Operations Management Conference; Washington, DC; 4-6 June 2024
学生支持:第九届北美工业工程与运营管理会议;
- 批准号:
2412300 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Travel Support for Broadening Participation of Researchers in the 2024 REMADE Institute Circular Economy Tech Summit & Conference; Washington, DC; 10-11 April 2024
为扩大研究人员参与 2024 年 REMADE 研究所循环经济技术峰会提供差旅支持
- 批准号:
2422667 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Equipment: MRI: Track #1 Acquisition of a Differential Scanning Calorimeter to Support Modern Materials Research and Teaching at Western Washington University
设备: MRI:轨道
- 批准号:
2320809 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Workshops on Smart Manufacturing with Open and Scaled Data Sharing in Semiconductor and Microelectronics Manufacturing; Virtual and In-Person; Washington, DC; October/November 2023
半导体和微电子制造中开放和规模化数据共享的智能制造研讨会;
- 批准号:
2334590 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
MAXIMIZING STUDENT DIVERSITY IN THE BIOMEDICAL SCIENCES AT WASHINGTON UNIVERSITY
最大限度地提高华盛顿大学生物医学科学学生的多样性
- 批准号:
10558159 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Washington University (WU) ROBIN Center: MicroEnvironment and Tumor Effects Of Radiotherapy (METEOR)
华盛顿大学 (WU) 罗宾中心:放射治疗的微环境和肿瘤效应 (METEOR)
- 批准号:
10715019 - 财政年份:2023
- 资助金额:
-- - 项目类别:
WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
- 批准号:
10819927 - 财政年份:2023
- 资助金额:
-- - 项目类别: