Knots in Washington XLI: a Conference Series on Knot Theory and its Ramifications; November 13-15, 2015
华盛顿的结 XLI:关于结理论及其衍生的会议系列;
基本信息
- 批准号:1543617
- 负责人:
- 金额:$ 8.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There will be six conferences over the next three-year period. This is a continuation of a very successful conference series "Knots in Washington", with a conference held every semester in the greater Washington DC area since Fall 1995. The first conference funded under this grant (and the 51st conference in the series) will be held in Fall 2015. The series will provide opportunity for researchers in the area to share their latest ideas and to collaborate with each other. The presentations will include plenary talks by distinguished researchers, as well as short talks by various participants. Graduate students and recent PhDs will also be encouraged to attend. Over the years, we have attracted a large number of postdocs, graduate students, and even some undergraduate students. In the greater Washington DC area, the series helps to bring together the relevant researchers, and to boost research activities in the region. Internationally, "Knots in Washington" has attracted researchers from all over the world, and is now considered a major conference in knot theory and low-dimensional topology. We expect to publish conference proceedings (as we did in the past) containing cutting-edge research papers and lecture notes that will be suitable for research mathematicians, students, and readers with background in other exact sciences, including physics, computer science, biology, and chemistry. The next conference will focus on the connections between Khovanov homology, homology of distributive structures, Yang-Baxter homology, and Quantum Computing, as well as on the general idea of categorification, including categorification of skein modules. There have been exciting new developments in the area of knot theory and 3-manifold topology in the last 35 years -- from Jones polynomial and quantum invariants of 3-manifolds, through Vassiliev invariants, topological quantum field theories, to relations with gauge theory type invariants in 4-dimensional topology (e.g., Donaldson, Witten). More recently, a new development in quantum topology has emerged in the form of Khovanov homology, a generalization of the Jones type polynomials to homology of chain complexes that significantly generalizes the invariants. Also, the categorification of the Kauffman bracket skein module of 3-manifolds has been proposed and developed for some manifolds. The relation to Hochschild homology of algebras has been discovered and studied. The (quantum) complexity of computing the Jones polynomial and Turaev-Viro invariants have been analyzed. Knots in Washington will provide a place for researchers in the above mentioned areas to communicate with each other and work together. The organizers will strive to be at the frontier of new developments in knot theory and its ramifications. Distinguished researchers will give plenary talks surveying the state of knowledge related to Khovanov homology. The choice of conference topics will also reflect the strength of the topology group at the George Washington University. Conference Web Page: http://home.gwu.edu/~przytyck/knots/index.html
在今后三年期间将举行六次会议。这是一个非常成功的会议系列"结在华盛顿"的延续,自1995年秋季以来,每学期在大华盛顿特区地区举行一次会议。第一次会议资助下,该赠款(和该系列的第51次会议)将在秋季2015年举行。该系列将为该领域的研究人员提供机会,分享他们的最新想法并相互合作。演讲将包括杰出研究人员的全体会议,以及各种与会者的简短演讲。研究生和最近的博士也将被鼓励参加。多年来,我们吸引了大量的博士后,研究生,甚至一些本科生。在大华盛顿地区,该系列有助于汇集相关研究人员,并促进该地区的研究活动。在国际上,"结在华盛顿"吸引了来自世界各地的研究人员,现在被认为是结理论和低维拓扑学的主要会议。我们希望出版会议记录(就像我们过去所做的那样),其中包含尖端的研究论文和演讲稿,适合研究数学家,学生和具有其他精确科学背景的读者,包括物理学,计算机科学,生物学和化学。下一次会议将集中讨论Khovanov同调,分配结构的同调,Yang-Baxter同调和量子计算之间的联系,以及分类的一般思想,包括skein模块的分类。在过去的35年里,纽结理论和3-流形拓扑领域取得了令人兴奋的新发展--从琼斯多项式和3-流形的量子不变量,到瓦西里耶夫不变量、拓扑量子场论,再到与规范理论的关系-维拓扑中的类型不变量(例如,唐纳森,维滕)。最近,量子拓扑学的一个新发展以霍瓦诺夫同调的形式出现,这是琼斯型多项式到链复合物同调的推广,它显著地推广了不变量。此外,我们还提出了三维流形的Kauffman括号skein模的分类,并对某些流形进行了推广。代数与Hochschild同调的关系已被发现和研究。分析了计算Jones多项式和Turaev-Viro不变量的量子复杂性。华盛顿的Knots将为上述领域的研究人员提供一个相互交流和共同工作的场所。组织者将努力在纽结理论及其分支的新发展的前沿。杰出的研究人员将给全体会议的报告调查有关Khovanov同源性的知识状态。会议主题的选择也将反映乔治华盛顿大学拓扑组的实力。会议网页:www.example.com
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jozef Przytycki其他文献
Linking numbers in rational homology 3-spheres, cyclic branched covers and infinite cyclic covers
有理同源 3 球体、循环分支覆盖和无限循环覆盖中的连接数
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Jozef Przytycki;Akira Yaushara - 通讯作者:
Akira Yaushara
Jozef Przytycki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jozef Przytycki', 18)}}的其他基金
Knots in Washington: Conferences on Knot Theory and its Ramifications
华盛顿的结:结理论及其影响的会议
- 批准号:
1137422 - 财政年份:2011
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Knots in Poland III; the conference on Knot Theory and its Ramifications
波兰的结 III;
- 批准号:
1034753 - 财政年份:2010
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Knots in Washington: Conferences on Knot Theory and its Ramifications 2008-2010
华盛顿结:结理论及其影响 2008-2010 年会议
- 批准号:
0817858 - 财政年份:2008
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Knots in Washington XXI: Skein Modules, Khovanov Homology and Hochschild Homology
华盛顿结 XXI:绞纱模块、Khovanov 同源性和 Hochschild 同源性
- 批准号:
0555648 - 财政年份:2006
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Knots in Washington XVIII: Khovanov homology
华盛顿结十八:霍瓦诺夫同源性
- 批准号:
0432284 - 财政年份:2004
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Topics in Algebraic Topology Based on Knots
基于结的代数拓扑专题
- 批准号:
9808955 - 财政年份:1999
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
相似海外基金
Washington Community and Technical College Consortium for Undergraduate Research and Equity
华盛顿社区和技术学院本科生研究和公平联盟
- 批准号:
2336652 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Participant Support for the Kahramanmaraş, Turkey, Earthquake Sequence One-year Anniversary Programming at the 2024 EERI Annual Meeting; Seattle, Washington; 9-12 April 2024
在 2024 年 EERI 年会上为土耳其卡赫拉曼马拉地震一周年纪念活动提供支持;
- 批准号:
2418579 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Conference: Materials Genome Initiative (MGI) Biennial Principal Investigator Workshop; Washington, DC; July 30-31, 2024
会议:材料基因组计划(MGI)两年一次的首席研究员研讨会;
- 批准号:
2422384 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Student Support: Ninth North American Industrial Engineering and Operations Management Conference; Washington, DC; 4-6 June 2024
学生支持:第九届北美工业工程与运营管理会议;
- 批准号:
2412300 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Travel Support for Broadening Participation of Researchers in the 2024 REMADE Institute Circular Economy Tech Summit & Conference; Washington, DC; 10-11 April 2024
为扩大研究人员参与 2024 年 REMADE 研究所循环经济技术峰会提供差旅支持
- 批准号:
2422667 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
MAXIMIZING STUDENT DIVERSITY IN THE BIOMEDICAL SCIENCES AT WASHINGTON UNIVERSITY
最大限度地提高华盛顿大学生物医学科学学生的多样性
- 批准号:
10558159 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Equipment: MRI: Track #1 Acquisition of a Differential Scanning Calorimeter to Support Modern Materials Research and Teaching at Western Washington University
设备: MRI:轨道
- 批准号:
2320809 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Workshops on Smart Manufacturing with Open and Scaled Data Sharing in Semiconductor and Microelectronics Manufacturing; Virtual and In-Person; Washington, DC; October/November 2023
半导体和微电子制造中开放和规模化数据共享的智能制造研讨会;
- 批准号:
2334590 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
- 批准号:
10819927 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别:
Washington University (WU) ROBIN Center: MicroEnvironment and Tumor Effects Of Radiotherapy (METEOR)
华盛顿大学 (WU) 罗宾中心:放射治疗的微环境和肿瘤效应 (METEOR)
- 批准号:
10715019 - 财政年份:2023
- 资助金额:
$ 8.4万 - 项目类别: