Knots in Washington: Conferences on Knot Theory and its Ramifications

华盛顿的结:结理论及其影响的会议

基本信息

  • 批准号:
    1137422
  • 负责人:
  • 金额:
    $ 6.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

AbstractAward: DMS-1137422Principal Investigator: Jozef H. Przytycki, Valentina S. Harizanov, Alexander N. Shumakovitch, Hao Wu This award provides partial support for participants of a series of conferences devoted to knot theory and its ramifications. It is a continuation of the very successful series of the ``Knots in Washington'' conferences held every semester in the greater Washington, DC area since the Fall of 1995. This proposal asks for support for four conferences over the next three years. The first such conference is expected to be held in Fall of 2011, focusing on connections between Khovanov homology, homology of multi-shelves (e.g. quandles or Boolean algebras), and Quantum Computing, and relating to the general idea of categorification including categorification of skein modules. It will be the 33rd conference in the Knots in Washington Conference Series. There have been exciting new developments in the area of knot theory and 3-manifold topology in the last 30 years. From the Jones polynomial and quantum invariants of 3-manifolds, through Vassiliev invariants, topological quantum field theories, to relations with gauge theory type invariants in 4-dimensional topology (e.g. Donaldson, Witten). More recently, again, a new development in quantum topology has emerged in the form of ``Khovanov homology", a generalization of the Jones type polynomials to homology of chain complexes that significantly generalizes the invariants. Also, the categorification of the Kauffman bracket skein module of 3-manifolds has been proposed and developed for some manifolds. The relation to Hochschild homology of algebras has been discovered and studied. The (quantum) complexity of computing the Jones polynomial and Turaev-Viro invariants have been analyzed. "Knots in Washington" meetings would provide a place for researchers in described above areas to communicate and work with one another. Distinguished researchers will give plenary talks surveying the state of knowledge related to Khovanov homology. PhD students and fresh PhD's will be encouraged to attend. We strive to be always in the frontier of new developments in Knot Theory and its ramifications. Our choice of conference topics also reflects the strength of our topology group at the George Washington University.Knots in Washington provides an opportunity for researchers in the area to share their latest ideas and to collaborate with each other. The presentations include plenary talks by distinguished researchers, as well as short talks by various participants. Over the years, we have attracted a large number of postdoctors, graduate students, and some undergraduates. In the greater Washington DC area, Knots in Washington helps to bring together the relevant researchers, and to boost the research activities in the region. Internationally, Knots in Washington has attracted researchers from all over the world, and is now considered as a major conference in knot theory and low-dimensional topology. We expect to publish conference proceedings (as we did in the past) containing cutting-edge research papers and lecture notes which will be suitable for research mathematicians, students and readers with background in other exact sciences, including biology, chemistry, computer science, and physics. Conference Web Page: http://home.gwu.edu/~przytyck/knots/index.html
摘要奖:DMS-1137422主要研究者:Jozef H.瓦伦蒂娜?普日蒂茨基亚历山大·哈里扎诺夫Shumakovitch,吴昊该奖项为一系列致力于纽结理论及其后果的会议的参与者提供部分支持。 这是自1995年秋季以来每学期在大华盛顿地区举行的一系列非常成功的“华盛顿结”会议的延续。 这项建议要求在今后三年内为四次会议提供支助。第一次这样的会议预计将在2011年秋季举行,重点是Khovanov同源性,多架同源性(例如quandles或布尔代数)和量子计算之间的联系,并涉及分类的一般思想,包括skein模块的分类。 这将是华盛顿会议系列中的第33次会议。 在过去的30年里,纽结理论和三维流形拓扑领域有了令人兴奋的新发展。从琼斯多项式和三维流形的量子不变量,通过瓦西里耶夫不变量,拓扑量子场论,到四维拓扑中与规范理论类型不变量的关系(例如唐纳森,维滕)。 最近,量子拓扑学又有了新的发展,出现了“Khovanov同调”的形式,这是琼斯型多项式对链复合物同调的推广,它显著地推广了不变量。 此外,我们还提出了三维流形的Kauffman括号skein模的分类,并对某些流形进行了推广。代数与Hochschild同调的关系已被发现和研究。分析了计算Jones多项式和Turaev-Viro不变量的量子复杂性。 “华盛顿之结”会议将为上述领域的研究人员提供一个相互交流和合作的场所。 杰出的研究人员将给全体会议的报告调查有关Khovanov同源性的知识状态。鼓励博士生和新博士生参加。我们努力始终处于纽结理论及其分支的新发展的前沿。我们对会议主题的选择也反映了我们乔治华盛顿大学拓扑组的实力。华盛顿的节点为该地区的研究人员提供了一个分享最新想法和相互合作的机会。演讲包括杰出研究人员的全体会议,以及各种与会者的简短演讲。多年来,我们吸引了大量的博士后,研究生和一些本科生。在大华盛顿地区,华盛顿的结有助于汇集相关研究人员,并促进该地区的研究活动。 在国际上,华盛顿的Knots吸引了来自世界各地的研究人员,现在被认为是纽结理论和低维拓扑学的主要会议。我们希望出版会议记录(就像我们过去所做的那样),其中包含尖端的研究论文和演讲稿,这些论文和演讲稿将适合研究数学家,学生和具有其他精确科学背景的读者,包括生物学,化学,计算机科学和物理学。会议网页:http://home.gwu.edu/~przytyck/knots/index.html

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jozef Przytycki其他文献

Linking numbers in rational homology 3-spheres, cyclic branched covers and infinite cyclic covers
有理同源 3 球体、循环分支覆盖和无限循环覆盖中的连接数

Jozef Przytycki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jozef Przytycki', 18)}}的其他基金

Knots in Washington XLI: a Conference Series on Knot Theory and its Ramifications; November 13-15, 2015
华盛顿的结 XLI:关于结理论及其衍生的会议系列;
  • 批准号:
    1543617
  • 财政年份:
    2015
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Knots in Poland III; the conference on Knot Theory and its Ramifications
波兰的结 III;
  • 批准号:
    1034753
  • 财政年份:
    2010
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Knots in Washington: Conferences on Knot Theory and its Ramifications 2008-2010
华盛顿结:结理论及其影响 2008-2010 年会议
  • 批准号:
    0817858
  • 财政年份:
    2008
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Knots in Washington XXI: Skein Modules, Khovanov Homology and Hochschild Homology
华盛顿结 XXI:绞纱模块、Khovanov 同源性和 Hochschild 同源性
  • 批准号:
    0555648
  • 财政年份:
    2006
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Knots in Washington XVIII: Khovanov homology
华盛顿结十八:霍瓦诺夫同源性
  • 批准号:
    0432284
  • 财政年份:
    2004
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Topics in Algebraic Topology Based on Knots
基于结的代数拓扑专题
  • 批准号:
    9808955
  • 财政年份:
    1999
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant

相似海外基金

Washington Community and Technical College Consortium for Undergraduate Research and Equity
华盛顿社区和技术学院本科生研究和公平联盟
  • 批准号:
    2336652
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Continuing Grant
Participant Support for the Kahramanmaraş, Turkey, Earthquake Sequence One-year Anniversary Programming at the 2024 EERI Annual Meeting; Seattle, Washington; 9-12 April 2024
在 2024 年 EERI 年会上为土耳其卡赫拉曼马拉地震一周年纪念活动提供支持;
  • 批准号:
    2418579
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Conference: Materials Genome Initiative (MGI) Biennial Principal Investigator Workshop; Washington, DC; July 30-31, 2024
会议:材料基因组计划(MGI)两年一次的首席研究员研讨会;
  • 批准号:
    2422384
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Student Support: Ninth North American Industrial Engineering and Operations Management Conference; Washington, DC; 4-6 June 2024
学生支持:第九届北美工业工程与运营管理会议;
  • 批准号:
    2412300
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Travel Support for Broadening Participation of Researchers in the 2024 REMADE Institute Circular Economy Tech Summit & Conference; Washington, DC; 10-11 April 2024
为扩大研究人员参与 2024 年 REMADE 研究所循环经济技术峰会提供差旅支持
  • 批准号:
    2422667
  • 财政年份:
    2024
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
MAXIMIZING STUDENT DIVERSITY IN THE BIOMEDICAL SCIENCES AT WASHINGTON UNIVERSITY
最大限度地提高华盛顿大学生物医学科学学生的多样性
  • 批准号:
    10558159
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
Equipment: MRI: Track #1 Acquisition of a Differential Scanning Calorimeter to Support Modern Materials Research and Teaching at Western Washington University
设备: MRI:轨道
  • 批准号:
    2320809
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
Workshops on Smart Manufacturing with Open and Scaled Data Sharing in Semiconductor and Microelectronics Manufacturing; Virtual and In-Person; Washington, DC; October/November 2023
半导体和微电子制造中开放和规模化数据共享的智能制造研讨会;
  • 批准号:
    2334590
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
    Standard Grant
WASHINGTON UNIVERSITY HUMAN TUMOR ATLAS RESEARCH CENTER
华盛顿大学人类肿瘤阿特拉斯研究中心
  • 批准号:
    10819927
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
Washington University (WU) ROBIN Center: MicroEnvironment and Tumor Effects Of Radiotherapy (METEOR)
华盛顿大学 (WU) 罗宾中心:放射治疗的微环境和肿瘤效应 (METEOR)
  • 批准号:
    10715019
  • 财政年份:
    2023
  • 资助金额:
    $ 6.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了