Online Stochastic Combinatorial Optimization

在线随机组合优化

基本信息

  • 批准号:
    0600384
  • 负责人:
  • 金额:
    $ 42.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

This grant provides funding for research on a novel paradigm for on-line, adaptive scheduling and resource allocation. This work envisions a new era in which optimization systems will not only allocate resources optimally: they will react and adapt to external events effectively under time constraints, anticipating the future and learning from the past to produce more robust and effective solutions. These systems will deal simultaneously with planning, scheduling, and control, complementing a priori optimization with integrated online decision making. The focus of this research is the concept of online stochastic combinatorial optimization that unifies stochastic optimization (from operations research) with online algorithms (from computer science). By moving from a priori to online optimization, this research will be able to provide adaptive algorithms focusing on the current data and uncertainty, and will make it possible to learn, and use, the uncertainty models online, which is critical in many applications such as pandemic containment. This framework naturally leverages progress in offline optimization.If successful, the results of this research will have a profound impact on time critical applications such as emergency response systems, pandemic containment, and power grid failure management. This research aims at developing systematically the theoretical foundations, the algorithms, the software infrastructure, and the applications of online stochastic combinatorial optimization. It will develop frameworks and algorithms for online stochastic combinatorial optimization that are general enough to model a wide variety of significant applications, and yet would provide quality guarantees with high probability and exhibit significant computational benefits. The research performed under this grant is likely to have significant impact on both undergraduate and graduate students at Brown, producing a stream of students with a broader perspective on decision making under uncertainty, and will lead to new courses and textbooks.
该补助金为在线,自适应调度和资源分配的新范式的研究提供资金。这项工作设想了一个新的时代,在这个时代,优化系统不仅可以最佳地分配资源:它们还可以在时间限制下有效地对外部事件做出反应和适应,预测未来并从过去学习,以产生更强大和有效的解决方案。这些系统将同时处理规划、调度和控制,通过集成的在线决策来补充先验优化。这项研究的重点是在线随机组合优化的概念,统一随机优化(从运筹学)与在线算法(从计算机科学)。通过从先验转向在线优化,这项研究将能够提供专注于当前数据和不确定性的自适应算法,并将使在线学习和使用不确定性模型成为可能,这在流行病遏制等许多应用中至关重要。如果成功的话,这项研究的结果将对紧急响应系统、流行病遏制和电网故障管理等时间关键型应用产生深远的影响。本研究旨在系统地发展在线随机组合优化的理论基础、算法、软件架构和应用。它将为在线随机组合优化开发框架和算法,这些框架和算法足够通用,可以模拟各种各样的重要应用,但仍将提供高概率的质量保证,并表现出显着的计算优势。在该资助下进行的研究可能会对布朗大学的本科生和研究生产生重大影响,培养出一批对不确定性下的决策有更广泛视角的学生,并将带来新的课程和教科书。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pascal Van Hentenryck其他文献

An Abstract Interpretation Framework which Accurately Handles Prolog Search-Rule and the Cut
准确处理Prolog搜索规则和剪切的抽象解释框架
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. L. Charlier;S. Rossi;Pascal Van Hentenryck
  • 通讯作者:
    Pascal Van Hentenryck
Model Combinators for Hybrid Optimization
用于混合优化的模型组合器
Assortment Optimization under the General Luce Model
通用Luce模型下的品类优化
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Álvaro Flores;Gerardo Berbeglia;Pascal Van Hentenryck
  • 通讯作者:
    Pascal Van Hentenryck
CLP(Intervals) Revisited
重温 CLP(间隔)
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Benhamou;David A. McAllester;Pascal Van Hentenryck
  • 通讯作者:
    Pascal Van Hentenryck
On the Handling of Disequations in CLP over Linear Rational Arithmetic
基于线性有理数算术的 CLP 不方程处理

Pascal Van Hentenryck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pascal Van Hentenryck', 18)}}的其他基金

SCC-CIVIC-PG Track A: Piloting On-Demand Multimodal Transit in Atlanta
SCC-CIVIC-PG 轨道 A:在亚特兰大试点按需多式联运
  • 批准号:
    2043431
  • 财政年份:
    2021
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Privacy and Fairness in Critical Decision Making
协作研究:SaTC:核心:小型:关键决策中的隐私和公平
  • 批准号:
    2133284
  • 财政年份:
    2021
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
AI Institute for Advances in Optimization
人工智能优化进展研究所
  • 批准号:
    2112533
  • 财政年份:
    2021
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Cooperative Agreement
SCC-CIVIC-FA Track A: Piloting On-Demand Multimodal Transit in Atlanta
SCC-CIVIC-FA 轨道 A:在亚特兰大试点按需多式联运
  • 批准号:
    2133342
  • 财政年份:
    2021
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2007095
  • 财政年份:
    2020
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
LEAP-HI: On-Demand Multimodal Transit Systems
LEAP-HI:按需多式联运系统
  • 批准号:
    1854684
  • 财政年份:
    2019
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
CRISP Type 1/Collaborative Research: Computable Market and System Equilibrium Models for Coupled Infrastructures
CRISP 类型 1/协作研究:耦合基础设施的可计算市场和系统均衡模型
  • 批准号:
    1852765
  • 财政年份:
    2018
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
High-Fidelity, High-Performance Multi-Stage Transmission Planning with Spatio-Temporal Uncertainty Models
利用时空不确定性模型进行高保真、高性能多级传输规划
  • 批准号:
    1912244
  • 财政年份:
    2018
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
High-Fidelity, High-Performance Multi-Stage Transmission Planning with Spatio-Temporal Uncertainty Models
利用时空不确定性模型进行高保真、高性能多级传输规划
  • 批准号:
    1709094
  • 财政年份:
    2017
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
CRISP Type 1/Collaborative Research: Computable Market and System Equilibrium Models for Coupled Infrastructures
CRISP 类型 1/协作研究:耦合基础设施的可计算市场和系统均衡模型
  • 批准号:
    1638199
  • 财政年份:
    2016
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Enabling Combinatorial Decision Making in Stochastic Environments
职业:在随机环境中实现组合决策
  • 批准号:
    2144285
  • 财政年份:
    2022
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Small: Combinatorial Optimization for Stochastic Inputs
合作研究:AF:小:随机输入的组合优化
  • 批准号:
    2006778
  • 财政年份:
    2020
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Combinatorial Optimization for Stochastic Inputs
合作研究:AF:小:随机输入的组合优化
  • 批准号:
    2006953
  • 财政年份:
    2020
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Algorithms for Combinatorial Optimization in Stochastic Networks
职业:随机网络中组合优化的自适应算法
  • 批准号:
    1652115
  • 财政年份:
    2017
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Continuing Grant
Extremes of combinatorial stochastic processes
组合随机过程的极值
  • 批准号:
    498604-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 42.45万
  • 项目类别:
    University Undergraduate Student Research Awards
Conference on Combinatorial Stochastic Processes
组合随机过程会议
  • 批准号:
    1346283
  • 财政年份:
    2014
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Standard Grant
Interacting stochastic (partial) differential equations, combinatorial stochastic processes and duality in spatial population dynamics
空间群体动态中的相互作用随机(偏)微分方程、组合随机过程和对偶性
  • 批准号:
    221756484
  • 财政年份:
    2012
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Priority Programmes
Longterm behaviour of interacting stochastic (partial) differential equations and combinatorial stochastic processes, with a focus on the method of duality
相互作用的随机(偏)微分方程和组合随机过程的长期行为,重点是对偶方法
  • 批准号:
    209674139
  • 财政年份:
    2011
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Research Grants
Hybrid stochastic local search algorithms for complex combinatorial problems
用于复杂组合问题的混合随机局部搜索算法
  • 批准号:
    238788-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial Stochastic Processes
组合随机过程
  • 批准号:
    0806118
  • 财政年份:
    2008
  • 资助金额:
    $ 42.45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了