Fluid Flows at Large
流体大流动
基本信息
- 批准号:0600692
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluid Flows at Large Abstract of Proposed ResearchMaria E. Schonbek This project is to continue work on the analysis of three fundamental equations that are basic for fluid mechanics. These are the Navier-Stokes and Magneto-hydrodynamic (MHD) equations of hydrodynamics and the 2d quasi-geostrophic (2dQG) equation of meteorology. For the Navier-Stokes equation, our efforts will center on analyzing the self-similar solutions on a half-space or, possibly, a conical domain. Interest will be on their regularity and describing the solutions explicitly. For the MHD equations, research will center on the asymptotic behavior of solutions when dissipation is solely dependent on velocity. For the geo-strophic equations, the research will focus on describing the long-time behavior of flows around obstacles. Analysis of the Navier-Stokes equations is fundamental for understanding fluid flows. Any explicit solution helps in describing what possible flows can be sustained. The MHD equations arise when one adds the effect of a magnetic field and the fluid is assumed to contain electrically charged particles and ions. This project will investigate the solutions of these equations in the absence of magnetic dissipation. The analysis of the QG equations is a model for air-flow around an obstacle; a common problem in meteorology.
流体流动在大的建议研究摘要。Schonbek这个项目是继续对流体力学的三个基本方程进行分析。这些是Navier-Stokes和磁流体动力学(MHD)方程和二维准地转(2dQG)气象方程。对于Navier-Stokes方程,我们的努力将集中在分析半空间或可能的圆锥区域上的自相似解。兴趣将是他们的规律性和明确描述的解决方案。对于MHD方程,研究将集中在耗散仅依赖于速度时解的渐近行为。对于地转方程,研究将集中在描述绕障碍物流动的长时间行为。 Navier-Stokes方程的分析是理解流体流动的基础。任何明确的解决方案都有助于描述哪些可能的流动可以持续。当人们加上磁场的影响,并假设流体中含有带电粒子和离子时,MHD方程就产生了。本计画将探讨在无磁耗散的情形下,这些方程式的解。QG方程的分析是一个障碍物周围气流的模型,这是气象学中的一个常见问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Schonbek其他文献
On the global well-posedness of strong dynamics of incompressible nematic liquid crystals in $${\mathbb{R}^N}$$
- DOI:
10.1007/s00028-016-0358-y - 发表时间:
2016-09-22 - 期刊:
- 影响因子:1.200
- 作者:
Maria Schonbek;Yoshihiro Shibata - 通讯作者:
Yoshihiro Shibata
Maria Schonbek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Schonbek', 18)}}的其他基金
U.S.-U.K. Doctoral Dissertation Enhancement Project: The Many Aspects of Fluids
美国-英国博士论文强化项目:流体的多个方面
- 批准号:
0630623 - 财政年份:2006
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: NSF/CBMS Regional Conference in Mathematical Sciences- "Compensated Compactness, Homogenization and H-Measures" June 28-July 3,1993
数学科学:NSF/CBMS 数学科学区域会议 - “补偿紧性、均质化和 H 测量” 1993 年 6 月 28 日至 7 月 3 日
- 批准号:
9215004 - 财政年份:1993
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Aspects of Fluid Flows
数学科学:流体流动的各个方面
- 批准号:
9307497 - 财政年份:1993
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Aspects of Compressible and Incompressible Flows
数学科学:可压缩和不可压缩流的方面
- 批准号:
9020941 - 财政年份:1991
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Mathematical Sciences: Aspects of Compressible and Incompressible Fluid Dynamics
数学科学:可压缩和不可压缩流体动力学方面
- 批准号:
8614887 - 财政年份:1986
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Non-Linear Dispersive and Diffusive Equations (Mathematics)
非线性色散和扩散方程(数学)
- 批准号:
8408753 - 财政年份:1984
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Dispersive and Diffusive Equations
数学科学:非线性色散和扩散方程
- 批准号:
8402600 - 财政年份:1984
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Existence and Decay of Conservation Laws
守恒定律的存在与衰落
- 批准号:
8102140 - 财政年份:1981
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
相似海外基金
Role and universality of large-scale flow structures in maximum drag-reducing flows of surfactant solutions
大规模流动结构在表面活性剂溶液最大减阻流动中的作用和普遍性
- 批准号:
23H01342 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Using Tracer Interrelationships to Understand Large-Scale Geophysical Flows and their Changes
职业:使用示踪剂相互关系来了解大规模地球物理流及其变化
- 批准号:
2239242 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Large Eddy Simulation in Complex Turbulent Flows with Coarse Resolution
复杂湍流中的粗分辨率大涡模拟
- 批准号:
2321473 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Large Deviation Principles for Coulomb-Type Flows
库仑型流动的大偏差原理
- 批准号:
557776-2021 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Postgraduate Scholarships - Doctoral
Large-eddy simulations of complex turbulent flows
复杂湍流的大涡模拟
- 批准号:
RGPIN-2016-04391 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Large-eddy simulations of complex turbulent flows
复杂湍流的大涡模拟
- 批准号:
RGPIN-2016-04391 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Computer-assisted solution verification for 3D flows with large Reynolds numbers
大雷诺数 3D 流动的计算机辅助解决方案验证
- 批准号:
21H00998 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Large Deviation Principles for Coulomb-Type Flows
库仑型流动的大偏差原理
- 批准号:
557776-2021 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Postgraduate Scholarships - Doctoral
Physical law and modeling of compressible separated flows using high-fidelity spatio-temporal large-scale data
使用高保真时空大规模数据的可压缩分离流的物理定律和建模
- 批准号:
21H01523 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Subgrid-Scale Modeling for Large Eddy Simulation of Soot Evolution in Turbulent Reacting Multiphase Flows to Account for Sensitivity to Fuel Composition and Properties
用于湍流反应多相流中烟灰演化的大涡模拟的亚网格尺度建模,以考虑对燃料成分和性能的敏感性
- 批准号:
517037-2018 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Postgraduate Scholarships - Doctoral