U.S.-U.K. Doctoral Dissertation Enhancement Project: The Many Aspects of Fluids
美国-英国博士论文强化项目:流体的多个方面
基本信息
- 批准号:0630623
- 负责人:
- 金额:$ 1.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-15 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
OISE 06-30623Schonbek, MariaThis is a project that supports doctoral dissertation enhancement research at Oxford University in the U.K. The U.S. principal investigator and advisor is Maria Schonbek from the University of California, Santa Cruz. Her student is Clayton Bjorland and her U.K. collaborator is Endre Suli. In this project Clayton Bjorland will consider questions related to the existence and asymptotic behavior of a system of nonlinear differential equations: the Viscous Camassa-Holm equations (VCHE), which are also known as Navier-Stokes-alpha equations (NS-alpha). These equations arose from work on shallow water equations. They were also derived as a "filtered" Navier-Stokes equation, which obeys a modified Kelvin circulation theorem along filtered velocities. The Navier-Stokes-alpha equations are closely related the famous Navier-Stokes equations, but the filter allows bounds that are currently unobtainable for the Navier-Stokes equations, and thus makes the NS-alpha equations in some sense better suited for computational turbulence. The hope is that these equations might give good approximations to the Navier-Stokes equations, which are the main model for fluid equations.One of the millennium problems, important classic questions that have resisted solution over the years, from the Clay Institute is in regards to regularity for solutions of the Navier-Stokes equations. The Navier-Stokes equations describe the movement of liquids and gases. Although they were found in the 19th century, they still are not well understood. The problem is to make progress toward a mathematical theory that will give us insight into these equations.
OISE 06- 30623 Schonbek,Maria这是一个支持英国牛津大学博士论文增强研究的项目。 美国首席研究员和顾问是来自加州大学圣克鲁斯的Maria Schonbek。 她的学生是克莱顿比约兰和她的英国。合作者是Endre Suli。在这个项目中,克莱顿Bjorland将考虑与非线性微分方程系统的存在性和渐近行为有关的问题:粘性Camassa-Holm方程(VCHE),也被称为Navier-Stokes-alpha方程(NS-alpha)。这些方程源于浅水方程的工作。它们也被推导为一个“过滤”的纳维-斯托克斯方程,该方程遵循沿着过滤速度的修正的开尔文环流定理。Navier-Stokes-alpha方程与著名的Navier-Stokes方程密切相关,但滤波器允许目前Navier-Stokes方程无法获得的边界,从而使NS-alpha方程在某种意义上更适合计算湍流。我们希望这些方程可以很好地近似Navier-Stokes方程,这是流体方程的主要模型。其中一个千年的问题,重要的经典问题,多年来一直抵制解决方案,从克莱研究所是关于Navier-Stokes方程的解的规律性。Navier-Stokes方程描述了液体和气体的运动。 虽然它们在世纪被发现,但人们对它们的了解仍然不多。 问题是要在数学理论上取得进展,使我们能够深入了解这些方程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Schonbek其他文献
On the global well-posedness of strong dynamics of incompressible nematic liquid crystals in $${\mathbb{R}^N}$$
- DOI:
10.1007/s00028-016-0358-y - 发表时间:
2016-09-22 - 期刊:
- 影响因子:1.200
- 作者:
Maria Schonbek;Yoshihiro Shibata - 通讯作者:
Yoshihiro Shibata
Maria Schonbek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Schonbek', 18)}}的其他基金
Mathematical Sciences: NSF/CBMS Regional Conference in Mathematical Sciences- "Compensated Compactness, Homogenization and H-Measures" June 28-July 3,1993
数学科学:NSF/CBMS 数学科学区域会议 - “补偿紧性、均质化和 H 测量” 1993 年 6 月 28 日至 7 月 3 日
- 批准号:
9215004 - 财政年份:1993
- 资助金额:
$ 1.01万 - 项目类别:
Standard Grant
Mathematical Sciences: Aspects of Fluid Flows
数学科学:流体流动的各个方面
- 批准号:
9307497 - 财政年份:1993
- 资助金额:
$ 1.01万 - 项目类别:
Continuing Grant
Mathematical Sciences: Aspects of Compressible and Incompressible Flows
数学科学:可压缩和不可压缩流的方面
- 批准号:
9020941 - 财政年份:1991
- 资助金额:
$ 1.01万 - 项目类别:
Continuing Grant
Mathematical Sciences: Aspects of Compressible and Incompressible Fluid Dynamics
数学科学:可压缩和不可压缩流体动力学方面
- 批准号:
8614887 - 财政年份:1986
- 资助金额:
$ 1.01万 - 项目类别:
Standard Grant
Non-Linear Dispersive and Diffusive Equations (Mathematics)
非线性色散和扩散方程(数学)
- 批准号:
8408753 - 财政年份:1984
- 资助金额:
$ 1.01万 - 项目类别:
Standard Grant
Mathematical Sciences: Nonlinear Dispersive and Diffusive Equations
数学科学:非线性色散和扩散方程
- 批准号:
8402600 - 财政年份:1984
- 资助金额:
$ 1.01万 - 项目类别:
Standard Grant
Existence and Decay of Conservation Laws
守恒定律的存在与衰落
- 批准号:
8102140 - 财政年份:1981
- 资助金额:
$ 1.01万 - 项目类别:
Standard Grant
相似海外基金
Identifying government spending shocks in the U.K: A novel instrumental approach based on natural disasters.
识别英国政府支出冲击:基于自然灾害的新颖工具方法。
- 批准号:
2864734 - 财政年份:2023
- 资助金额:
$ 1.01万 - 项目类别:
Studentship
Introducing "Pows b", a children's mindfulness program developed in U.K., to Japan
将英国开发的儿童正念项目“Pows b”引入日本
- 批准号:
23K02914 - 财政年份:2023
- 资助金额:
$ 1.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding, forecasting, and mitigating zoonotic mosquito-borne viral disease in the U.K.
了解、预测和减轻英国人畜共患蚊媒病毒性疾病
- 批准号:
BB/X018024/1 - 财政年份:2023
- 资助金额:
$ 1.01万 - 项目类别:
Research Grant
Investigating male athletes' perceptions of female coaching: A case study of Field Hockey in the U.K
调查男性运动员对女性教练的看法:以英国曲棍球为例
- 批准号:
2753830 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Studentship
Establishing the U.K. Supply Chain for Circular Cellulose; Turning Commercial Textile Waste into Viable Packaging.
建立英国循环纤维素供应链;
- 批准号:
10046125 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Grant for R&D
Art for Narrative and Empowerment of Terminally Ill Cancer Patients - with Reference to Trends in the U.K. and the U.S.
癌症晚期患者的叙事艺术和赋权——参考英国和美国的趋势
- 批准号:
21KK0220 - 财政年份:2022
- 资助金额:
$ 1.01万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
The Transition of Cultural Hegemony in the Twentieth Century Asia-Pacific: U.K.-U.S Rivalry and the Trend of Japan, Australia, and Canada
20世纪亚太文化霸权变迁:英美博弈与日澳加走向
- 批准号:
21K01347 - 财政年份:2021
- 资助金额:
$ 1.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
From Suffrage To Representation: Women, Suffragists and Politicians upon Enfranchisement in the U.S., U.K, Norway and Chile
从选举权到代表权:美国、英国、挪威和智利的妇女、选举权主义者和政治家的选举权
- 批准号:
ES/T01394X/2 - 财政年份:2021
- 资助金额:
$ 1.01万 - 项目类别:
Research Grant
A comparative study of heckling at the Diet in Japan and the Parliament in the U.K.
日本国会和英国议会质询的比较研究
- 批准号:
20K13005 - 财政年份:2020
- 资助金额:
$ 1.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Japan-U.S.-U.K. Relations over the Washington Treaty System in 1930
日本-美国-英国
- 批准号:
20K13427 - 财政年份:2020
- 资助金额:
$ 1.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists