Moduli Spaces of Curves and their Cohomology

曲线模空间及其上同调

基本信息

  • 批准号:
    0600803
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2010-06-30
  • 项目状态:
    已结题

项目摘要

In this project, the following problems will be studied. (A) Does M(g), the moduli space of nonsingular curves of genus g, contain complete subvarieties of dimension g-2? Does its Deligne-Mumford compactification contain large complete subvarieties not intersecting certain boundary components? (B) The question which part of the cohomology comes from the so-called tautological classes and the problem of understanding the relations between these classes. (C) The problem of understanding the entire cohomology of moduli spaces of curves motivically (for low genus). (D) The problem of obtaining a qualitative understanding of the representations of the symmetric group appearing in the cohomology of moduli spaces of pointed curves (the points are ordered, which yields a natural action of the symmetric group). The moduli space of curves plays a fundamental role in many areas of mathematics and in theoretical physics (string theory). Results obtained by studying the problems above will deepen our understanding of the moduli space itself, of families of curves, and ultimately of the fibrations in curves of arbitrary spaces. One usually begins by studying curves that are well-behaved (i.e., projective, nonsingular, connected) and that are given by equations whose coefficients are complex numbers (or elements of another algebraically closed field). The fundamental invariant of such a curve is its so-called genus, a nonnegative integer. If one draws a real picture of a complex curve, one sees a (compact and connected) surface; its genus is the number of `holes'. Often it is important to distinguish non-isomorphic curves of the same genus and to describe the isomorphism classes of curves of a given genus g. The moduli space M(g) of curves of genus g is a space whose points correspond to these isomorphism classes and it has the property that a family of curves of genus g over a base comes with a natural map from the base to M(g). The moduli space of curves makes its appearance in many branches of mathematics and also in theoretical physics. It is studied intensively and for good reasons. E.g., results about M(g) tell us something about families of curves, thus ultimately about arbitrary solution spaces in algebraic geometry.
在本项目中,将研究以下问题。(A)亏格为g的非奇异曲线的模空间M(g)是否包含g-2维的完备子簇?它的Deligne-Mumford紧化是否包含不与某些边界分支相交的大的完全子簇?(B)上同调的哪一部分来自所谓重言式类的问题,以及理解这些类之间关系的问题。(C)曲线模空间的全上同调的动力学理解问题(低亏格)。(D)获得定性理解对称群的表示出现在尖曲线的模空间的上同调中的问题(点是有序的,这产生了对称群的自然作用)。 曲线的模空间在数学和理论物理(弦理论)的许多领域中起着基础性的作用。研究上述问题所得到的结果将加深我们对模空间本身、曲线族以及任意空间中曲线的纤维化的理解。人们通常从研究表现良好的曲线开始(即,投射的,非奇异的,连通的),并且由系数为复数的方程(或另一个代数闭域的元素)给出。这样一条曲线的基本不变量是它所谓的亏格,一个非负整数。如果我们画一幅复曲线的真实的图,我们看到的是一个(紧致的和连通的)曲面;它的亏格就是“洞”的个数。通常区分同亏格的非同构曲线和描述给定亏格g的曲线的同构类是很重要的。亏格g的曲线的模空间M(g)是其点对应于这些同构类的空间,并且它具有这样的性质:在基上亏格g的曲线族具有从基到M(g)的自然映射。曲线的模空间出现在数学的许多分支中,也出现在理论物理中。它被深入研究,并有很好的理由。例如,在一个示例中,关于M(g)的结果告诉我们一些关于曲线族的东西,从而最终告诉我们代数几何中的任意解空间。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Zucker其他文献

Classification of non-rigid families of K3 surfaces and a finiteness theorem of Arakelov type
  • DOI:
    10.1007/bf01446555
  • 发表时间:
    1991-03-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Masa-Hiko Saito;Steven Zucker
  • 通讯作者:
    Steven Zucker
Variation of mixed Hodge structure. II
  • DOI:
    10.1007/bf01388730
  • 发表时间:
    1985-10-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Steven Zucker
  • 通讯作者:
    Steven Zucker
A tensorial curvature and a theorem of Chern
  • DOI:
    10.1007/bf01162597
  • 发表时间:
    1983-03-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Steven Zucker
  • 通讯作者:
    Steven Zucker
Intersection numbers of sections of elliptic surfaces
  • DOI:
    10.1007/bf01403189
  • 发表时间:
    1979-02-01
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    David A. Cox;Steven Zucker
  • 通讯作者:
    Steven Zucker
Toward a manifold encoding neural responses
走向多种编码神经反应

Steven Zucker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Zucker', 18)}}的其他基金

CRCNS Research Proposal: Collaborative Research: New Dimensions of Visual Cortical Organization
CRCNS 研究提案:合作研究:视觉皮层组织的新维度
  • 批准号:
    1822650
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hodge theory and L2-cohomology, Fall 2014
Hodge 理论和 L2-上同调,2014 年秋季
  • 批准号:
    1449104
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Non-Local Cortical Computation and Enhanced Learning with Astrocytes
EAGER:协作研究:非局部皮质计算和星形胶质细胞增强学习
  • 批准号:
    1344458
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
US-German Collaboration: Towards a Neural Theory of 3D Shape Perception
美德合作:迈向 3D 形状感知的神经理论
  • 批准号:
    1131883
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: High Performance Neural Computing
合作研究:高性能神经计算
  • 批准号:
    0749157
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Workshop: Hodge Theory and Logarithmic Geometry; March, 2005; Baltimore, MD
研讨会:霍奇理论与对数几何;
  • 批准号:
    0443197
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
U.S.-Japan Cooperative Science: Shimura varieties and Automorphic Forms
美日合作科学:志村变种和自守形式
  • 批准号:
    9909797
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Intersection Homogoly, Hodge Theory L2-Cohomology
交集同调、霍奇理论 L2-上同调
  • 批准号:
    9820958
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SGER: Intermediate-level Structural Categories from Visual Complexity Analysis
SGER:视觉复杂性分析的中级结构类别
  • 批准号:
    9714331
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Hodge Theory, L 2-Cohomology and Intersection Homology
数学科学:Hodge 理论、L 2-上同调和交交同调
  • 批准号:
    9423689
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER:Combinatorial Intersection Theory on Moduli Spaces of Curves
职业:曲线模空间的组合交集理论
  • 批准号:
    2137060
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Tropical Methods in the Study of Moduli Spaces of Families of Curves
研究曲线族模空间的热带方法
  • 批准号:
    2054135
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Tropical Methods for the Tautological Intersection Theory of the Moduli Spaces of Curves
曲线模空间同义反复交集理论的热带方法
  • 批准号:
    2100962
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Generalized Verlinde Bundles and Moduli Spaces of Curves
广义 Verlinde 丛和曲线模空间
  • 批准号:
    2202068
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Fundamental groups and moduli spaces of curves in positive characteristic
正特性曲线的基本群和模空间
  • 批准号:
    20K14283
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Moduli spaces of stable and unstable maps to curves and surfaces
稳定和不稳定的模空间映射到曲线和曲面
  • 批准号:
    2426278
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
RUI: Compactifying Moduli Spaces of Orbits, Covers, and Curves
RUI:压缩轨道、覆盖和曲线的模空间
  • 批准号:
    2001439
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Counting Curves Using the Topology of Moduli Spaces
使用模空间拓扑计算曲线
  • 批准号:
    2001565
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Generalized Verlinde Bundles and Moduli Spaces of Curves
广义 Verlinde 丛和曲线模空间
  • 批准号:
    1902237
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了