Tropical Methods for the Tautological Intersection Theory of the Moduli Spaces of Curves

曲线模空间同义反复交集理论的热带方法

基本信息

  • 批准号:
    2100962
  • 负责人:
  • 金额:
    $ 16.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Algebraic geometry is a broad and active area of research in mathematics. Moduli spaces, geometric objects whose points parameterize other geometric objects, are of fundamental importance both in algebraic geometry, and in connecting algebraic geometry to other areas of science. For example, the connection with physics arises from the fact that the evolution of strings in space-time may be interpreted as an appropriate measurement on a moduli space of stable maps to space-time. The geometry of moduli space is extremely sophisticated, but it often comes with a rich recursive structure: in simple terms, more complicated moduli spaces contain within themselves a skeleton built of simpler moduli spaces. Over the last few decades this phenomenon has led to the development of several combinatorial approaches to the study of intersection theory of moduli spaces. The main goal of this project is to develop a thorough understanding of the intersection theory of a particular class of moduli spaces, called admissible cover spaces. Admissible cover spaces provide a rich and interesting connection between algebraic geometry and representation theory of finite groups, and have significant applications to mathematical physics and mirror symmetry. The goal will be achieved through a combination of several techniques and perspectives, including methods coming from tropical geometry, logarithmic geometry and mathematical physics. The PI, together with collaborators, will work in parallel both to further develop and to apply these techniques to the study of the structure of moduli spaces of admissible covers. This project provides research training opportunities for students.Specific projects contributing to achieving the main goal are organized in three groups. The first group of projects explores the structure of classes of hyperelliptic curves with marked Weierstrass points and pairs of conjugate points. The aim is to generalize the notion of Cohomological Field Theory, and to exploit this structure to obtain graph formulas for these classes. A better understanding of the structure of admissible cover loci is a tool to recover enumerative information hidden in Gromov-Witten invariants of curves. The second group of projects aims to give a solid combinatorial framework for the tautological intersection theory of a directed system of birational models of the moduli space of curves, obtained by blowing up all boundary strata (and proper transforms thereof). Besides being of independent interest, we expect this calculus to be an important tool in understanding families of classes of admissible covers, whose intersection with the boundary is transversalized in these birational transforms. These techniques allow new perspectives on the computation of double Hurwitz numbers, and the generalization to similar enumerative geometric problems on moduli spaces of twisted log-canonical divisors. Tropical geometry plays a fundamental role in organizing the birational modifications of the moduli space of curves that we expect to use in the study of cycles of admissible covers. The last group of projects builds on foundational work in tropical geometry that the PI conducted in collaboration with Gross and Markwig. Having defined a theory of tropical psi classes, the goal is now to establish a rigorous tropicalization statement relating algebraic and tropical classes, with the expectation that these will play a significant role in connecting algebraic and tropical intersection theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何是数学中一个广泛而活跃的研究领域。模空间是一种几何对象,它的点可以参数化其他几何对象。模空间在代数几何以及将代数几何与其他科学领域联系起来方面都具有重要的基础意义。例如,与物理学的联系源于这样一个事实,即时空中弦的演化可以被解释为对稳定映射到时空的模空间的适当测量。模空间的几何结构非常复杂,但它通常具有丰富的递归结构:简单地说,更复杂的模空间包含由更简单的模空间构建的骨架。在过去的几十年里,这种现象导致了几种组合方法的发展,以研究模空间的相交理论。这个项目的主要目标是深入理解一类特殊模空间的相交理论,称为可容许覆盖空间。可容许覆盖空间在代数几何和有限群表示理论之间提供了丰富而有趣的联系,并且在数学物理和镜像对称中具有重要的应用。这一目标将通过几种技术和观点的结合来实现,包括来自热带几何、对数几何和数学物理的方法。PI将与合作者一起并行工作,进一步发展并将这些技术应用于可容许覆盖的模空间结构的研究。本项目为学生提供研究训练机会。有助于实现主要目标的具体项目分为三组。第一组课题探讨了具有标记weerstrass点和共轭点对的超椭圆曲线类的结构。目的是推广上同调场论的概念,并利用这种结构得到这些类的图公式。更好地理解可容许覆盖轨迹的结构是恢复隐藏在曲线Gromov-Witten不变量中的枚举信息的工具。第二组项目旨在为曲线模空间的双向模型的有向系统的同调相交理论提供一个坚实的组合框架,通过炸毁所有边界地层(及其适当变换)获得。除了具有独立的兴趣外,我们期望这个微积分成为理解可容许覆盖的类族的重要工具,这些可容许覆盖与边界的相交在这些分型变换中是横向的。这些技术为二重Hurwitz数的计算提供了新的视角,并将其推广到扭曲对数正则除数模空间上的类似枚举几何问题。热带几何在组织曲线模空间的二元修正方面起着基本的作用,我们期望在可容许覆盖的循环研究中使用这些修正。最后一组项目建立在PI与Gross和Markwig合作开展的热带几何基础工作的基础上。在定义了热带psi类的理论之后,现在的目标是建立一个关于代数类和热带类的严格的热带化陈述,期望这些将在连接代数和热带交集理论中发挥重要作用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Renzo Cavalieri其他文献

Tropical compactification and the Gromov–Witten theory of $$\mathbb {P}^1$$
  • DOI:
    10.1007/s00029-016-0265-7
  • 发表时间:
    2016-09-03
  • 期刊:
  • 影响因子:
    1.200
  • 作者:
    Renzo Cavalieri;Hannah Markwig;Dhruv Ranganathan
  • 通讯作者:
    Dhruv Ranganathan
Quadratic pseudostable hodge integrals and Mumford’s relation
  • DOI:
    10.1007/s00209-025-03744-4
  • 发表时间:
    2025-05-03
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Renzo Cavalieri;Matthew M. Williams
  • 通讯作者:
    Matthew M. Williams
Mass formula for non-ordinary curves in one dimensional families
  • DOI:
    10.1007/s00229-024-01610-x
  • 发表时间:
    2025-01-17
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Renzo Cavalieri;Rachel Pries
  • 通讯作者:
    Rachel Pries
Hyperelliptic Gromov -Witten theory
超椭圆格罗莫夫-维滕理论
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William D. Gillam;William D. Gillam;Renzo Cavalieri;Johan de Jong;D. Maulik;Rahul Pandhari;John Baldwin;Matt Deland;Joe Ross
  • 通讯作者:
    Joe Ross
Counting bitangents with stable maps
  • DOI:
    10.1016/j.exmath.2006.01.003
  • 发表时间:
    2006-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Ayala;Renzo Cavalieri
  • 通讯作者:
    Renzo Cavalieri

Renzo Cavalieri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Renzo Cavalieri', 18)}}的其他基金

Western Algebraic Geometry Symposium
西方代数几何研讨会
  • 批准号:
    1946952
  • 财政年份:
    2019
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Western Algebraic Geometry Symposium
西方代数几何研讨会
  • 批准号:
    1636713
  • 财政年份:
    2016
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Gromov-Witten Theory
FRG:合作研究:格罗莫夫-维滕理论
  • 批准号:
    1159964
  • 财政年份:
    2012
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Tautological Intersection Theory on Moduli Spaces
模空间的同义反复交集理论
  • 批准号:
    1101549
  • 财政年份:
    2011
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Western Algebraic Geometry Seminar - Five Year Plan
西方代数几何研讨会-五年计划
  • 批准号:
    0955038
  • 财政年份:
    2010
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Western Algebraic Geometry Seminar - Fall 2009
西方代数几何研讨会 - 2009 年秋季
  • 批准号:
    0951907
  • 财政年份:
    2009
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Studentship
Developing behavioural methods to assess pain in horses
开发评估马疼痛的行为方法
  • 批准号:
    2686844
  • 财政年份:
    2025
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Studentship
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
  • 批准号:
    DE240100316
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Discovery Early Career Researcher Award
Development and Translation Mass Spectrometry Methods to Determine BioMarkers for Parkinson's Disease and Comorbidities
确定帕金森病和合并症生物标志物的质谱方法的开发和转化
  • 批准号:
    2907463
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Studentship
Non invasive methods to accelerate the development of injectable therapeutic depots
非侵入性方法加速注射治疗储库的开发
  • 批准号:
    EP/Z532976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
  • 批准号:
    EP/Y002113/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
  • 批准号:
    2338663
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Conference: North American High Order Methods Con (NAHOMCon)
会议:北美高阶方法大会 (NAHOMCon)
  • 批准号:
    2333724
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
  • 批准号:
    2348712
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
CAREER: New methods in curve counting
职业:曲线计数的新方法
  • 批准号:
    2422291
  • 财政年份:
    2024
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了