Invariants for Multivariate Operator Theory

多元算子理论的不变量

基本信息

  • 批准号:
    0600865
  • 负责人:
  • 金额:
    $ 11.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2009-12-31
  • 项目状态:
    已结题

项目摘要

Abstract:Many physical phenomena are modeled mathematically using integral and differential equations which relate the physical variables and their rates of change. At least to a first approximation, such equations can be taken to be linear and can be profitably viewed as acting on spaces of functions. These space often possess a notion of length like that in Euclidean space which results in what is called a Hilbert space. The study of operators or linear transformations on such spaces has led to new insights in our understanding of quantum mechanics in physics and systems theory in electrical engineering. There are also strong interactions of operator theory with other parts of mathematics including geometry and topology. In recent years, researchers have turned much of their interest to studying more than one operator at a time, often assuming that they commute. As one might guess, the mathematical phenomena modeled can be quite intricate and they rest on notions and concepts from algebra and geometry. Moreover, the questions and results obtained have enriched these fields as well as providing powerful tools to study this multi-variable operator theory.While the study of self-adjoint multivariate operator theory is many decades old, the current proposal concerns the non-self adjoint case which has strong ties to algebraic and complex geometry. The basic notion of module from algebra is adapted to the Hilbert space setting. One considers examples in which holomorphic vector bundles arise naturally and curvature and higher order notions of curvature allow one to mediate results in operator theory. In the current proposal, the principal focus is on quotient modules and modeling their structure and kernel function using a new jet bundle constructed precisely for this purpose. The case when the quotient module is determined by a hyper surface is pretty well under control, at least for the ideal of functions vanishing to low order in the normal direction. Extending this understanding to other ideals determined by varieties with higher co dimension is the next large step and will be at the center of efforts over the next two years.
摘要:许多物理现象都是用与物理变量及其变化率相关的积分方程式和微分方程式进行数学建模的。至少在第一次近似下,这样的方程可以被认为是线性的,并且可以有益地被视为作用于函数空间。这些空间通常具有欧几里得空间中的长度概念,这导致了所谓的希尔伯特空间。对这种空间上的算符或线性变换的研究使我们对物理学中的量子力学和电子工程中的系统论有了新的理解。算符理论与数学的其他部分也有很强的相互作用,包括几何学和拓扑学。近年来,研究人员将大部分兴趣转向同时研究不止一个运营商,通常假设他们通勤。正如人们可能猜测的那样,所模拟的数学现象可能相当复杂,它们依赖于代数和几何中的概念和概念。虽然自伴多元算子理论的研究已经有了几十年的历史,但目前的研究主要针对与代数和复杂几何有着密切联系的非自伴情形。代数中模的基本概念适用于Hilbert空间环境。我们考虑这样的例子:全纯向量丛是自然产生的,而曲率和高阶曲率概念允许我们在算子理论中调解结果。在当前的提案中,主要的焦点是商模,并使用为此目的而构造的新的喷丛来建模它们的结构和核函数。当商模由超曲面确定时,至少对于函数在法线方向上消失到低阶的理想来说,这种情况是很好地控制的。将这一理解扩展到由具有更高余维的品种确定的其他理想是下一大步,将是未来两年努力的中心。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronald Douglas其他文献

Some Results in the Hyperinvariant Subspace Problem and Free Probability
超不变子空间问题和自由概率的一些结果
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. H. T. Scuadroni;Ronald Douglas;Scott Miller;Roger Smith;G. Tucci;Kenneth Dykema;Valentina Vega Veglio
  • 通讯作者:
    Valentina Vega Veglio
A local theory for operator tuples in the Cowen-Douglas class
Cowen-Douglas 类中运算符元组的局部理论
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chen Li;Ronald Douglas
  • 通讯作者:
    Ronald Douglas

Ronald Douglas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ronald Douglas', 18)}}的其他基金

MATH:CONFERENCE: Active Learning Approaches in Mathematics Instruction: Practice and Assessment Workshop
数学:会议:数学教学中的主动学习方法:实践和评估研讨会
  • 批准号:
    1544374
  • 财政年份:
    2015
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
US-India Cooperative Research: Geometric Invariants for Quotient Modules
美印合作研究:商模的几何不变量
  • 批准号:
    0097044
  • 财政年份:
    2001
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Connections of Modern Analysis with Geometry and Topology
数学科学:现代分析与几何和拓扑的联系
  • 批准号:
    9304283
  • 财政年份:
    1993
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Connections of Modern Analysis with Geometry and Topology
数学科学:现代分析与几何和拓扑的联系
  • 批准号:
    9003335
  • 财政年份:
    1990
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Connections of Modern Analysis with Geometry and Topology
数学科学:现代分析与几何和拓扑的联系
  • 批准号:
    8702065
  • 财政年份:
    1987
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Postdoctoral and Predoctoral Program at Stony Brook in Mathematics/Mathematical Physics
数学科学:石溪分校数学/数学物理博士后和博士前项目
  • 批准号:
    8405661
  • 财政年份:
    1985
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Connections of Modern Analysis With Geometry and Topology >
数学科学:现代分析与几何和拓扑的联系 >
  • 批准号:
    8401760
  • 财政年份:
    1984
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant
Pure & Applied Operator Theory
纯的
  • 批准号:
    8102399
  • 财政年份:
    1981
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant
Pure and Applied Operator Theory
纯粹与应用算子理论
  • 批准号:
    7801871
  • 财政年份:
    1978
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant
Pure and Applied Operator Theory
纯粹与应用算子理论
  • 批准号:
    7604968
  • 财政年份:
    1976
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant

相似海外基金

A novel damage characterization technique based on adaptive deconvolution extraction algorithm of multivariate AE signals for accurate diagnosis of osteoarthritic knees
基于多变量 AE 信号自适应反卷积提取算法的新型损伤表征技术,用于准确诊断膝关节骨关节炎
  • 批准号:
    24K07389
  • 财政年份:
    2024
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complexity of couplings in multivariate time series via a marriage of ordinal pattern analysis with topological data analysis
通过序数模式分析与拓扑数据分析的结合研究多元时间序列中耦合的复杂性
  • 批准号:
    23K03219
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Ethnic-racial discrimination influences on neural representation of threat learning in Latina girls: A multivariate modeling approach
职业:民族种族歧视对拉丁裔女孩威胁学习的神经表征的影响:多元建模方法
  • 批准号:
    2239067
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant
Multivariate machine learning analysis for identyfing neuro-anatomical biomarkers of anorexia and classifying anorexia subtypes using MR datasets.
多变量机器学习分析,用于识别厌食症的神经解剖生物标志物并使用 MR 数据集对厌食症亚型进行分类。
  • 批准号:
    23K14813
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CDS&E: Immersive Virtual Reality for Discovering Hidden Chemical Information and Improving Multivariate Modeling and Predication
CDS
  • 批准号:
    2305020
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Standard Grant
Applications of Algebraic Geometry to Multivariate Gaussian Models
代数几何在多元高斯模型中的应用
  • 批准号:
    2306672
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Continuing Grant
Multivariate analysis methods for optical imaging measurements of macroscopic inhomogeneous structures
宏观非均匀结构光学成像测量的多元分析方法
  • 批准号:
    23K03283
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simplification of solution matrices in multivariate data analysis by integrating of sparseness and simple structure
通过稀疏性和简单结构的结合简化多元数据分析中的解矩阵
  • 批准号:
    23K16854
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of non-invasive measurement and induction of multivariate sharp-wave ripples in the human brain
开发人脑多元尖波波纹的非侵入性测量和感应
  • 批准号:
    23K14679
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploring and exploiting new representations for multivariate extremes
探索和利用多元极值的新表示
  • 批准号:
    EP/X010449/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.6万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了