Applications of Algebraic Geometry to Multivariate Gaussian Models

代数几何在多元高斯模型中的应用

基本信息

项目摘要

The present project aims to do an in depth analysis on the algebraic and geometric structure of two main types of Gaussian models that are commonly chosen in applications: colored Gaussian graphical (CGG) models and Brownian motion tree (BMT) models. CGG models are for modeling interactions among random variables, taking in consideration possible similar traits, and BMT models are Gaussian models for the evolution of continuous traits in mathematical phylogenetics. The investigator will then use this information to compute the complexity of the maximum likelihood estimate problem for each model, a key issue when analyzing data. Some elements of the project will involve undergraduate students majoring in STEM disciplines, especially those from underrepresented groups with limited educational resources. The investigator will use algebra, geometry, combinatorics, and symbolic computations to better understand statistical models and make advancements on their maximum likelihood estimate (MLE) problem. For Gaussian models this starts by identifying Gaussian distributions with their covariance or concentration matrices and analyzing the polynomials vanishing on these matrices. The maximum likelihood degree (MLD) of a statistical model, which computes the complexity of finding the maximum likelihood estimate (MLE) of a statistical model for given data, relies on tools from algebra and geometry such as optimizing over an algebraic variety, intersection theory and polyhedral geometry. Specific questions that this project aims to answer are: (1) determine features in a phylogenetic tree that affect the maximum likelihood degree of its BMT model and connections to the algebraic degree of the vanishing ideal for the BMT model, (2) classify CGG models with toric structure; that is, with toric vanishing ideal or with vanishing ideal that turns toric after an appropriate linear change of variables, (3) find formulas for the maximum likelihood degree of CGG models and for the maximum likelihood estimate function of CGG models with MLD one. The investigator emphasizes CGG models with the algebraic structure of a toric variety because the bimonial equations of a toric statistical model can be used to fasten computations on the MLD of the model, produce Markov bases, contribute in hypothesis testing algorithms, and the polytope associated to the toric model is useful for studying the existence of MLE.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目旨在对应用中常用的两种主要类型的高斯模型:有色高斯图形(CGG)模型和布朗运动树(BMT)模型的代数和几何结构进行深入的分析。CGG模型用于模拟随机变量之间的交互作用,考虑到可能的相似性状,而BMT模型是数学系统发育中连续性状进化的高斯模型。然后,研究人员将使用这些信息来计算每个模型的最大似然估计问题的复杂性,这是分析数据时的一个关键问题。该项目的一些内容将涉及STEM专业的本科生,特别是那些来自教育资源有限、代表性不足的群体的学生。研究人员将使用代数、几何、组合学和符号计算来更好地理解统计模型,并在其最大似然估计(MLE)问题上取得进展。对于高斯模型,这从识别高斯分布及其协方差或浓度矩阵开始,并分析在这些矩阵上消失的多项式。统计模型的最大似然程度(MLD)是计算给定数据的统计模型的最大似然估计(MLE)的复杂性,它依赖于代数和几何中的工具,如代数簇上的优化、交集理论和多面体几何。本课题要回答的具体问题是:(1)确定影响其BMT模型的最大似然程度的系统发育树的特征及其与BMT模型的消失理想的代数化程度的联系;(2)对具有环状结构的CGG模型进行分类;即具有环状结构的CGG模型或具有环状消失理想的CGG模型,(3)找到CGG模型的最大似然程度和具有MLD结构的CGG模型的最大似然估计函数的公式。研究人员强调了具有Toric变体代数结构的CGG模型,因为Toric统计模型的双调方程可以用于加快模型MLD的计算,产生马尔可夫基,有助于假设检验算法,并且与Toric模型相关的多面体有助于研究MLE的存在。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aida Maraj其他文献

Algebraic and Geometric Properties of Hierarchical Models
  • DOI:
    10.13023/etd.2020.232
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aida Maraj
  • 通讯作者:
    Aida Maraj
Generalized cut polytopes for binary hierarchical models
二元分层模型的广义切割多胞形
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jane Ivy Coons;Joseph Cummings;Benjamin Hollering;Aida Maraj
  • 通讯作者:
    Aida Maraj
Reciprocal Maximum Likelihood Degrees of Brownian Motion Tree Models
布朗运动树模型的倒数最大似然度
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Boege;Jane Ivy Coons;C. Eur;Aida Maraj;Frank Rottger
  • 通讯作者:
    Frank Rottger
Symmetrically Colored Gaussian Graphical Models with Toric Vanishing Ideals
具有环面消失理想的对称彩色高斯图形模型
  • DOI:
    10.1137/21m1466943
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jane Ivy Coons;Aida Maraj;Pratik Misra;Miruna
  • 通讯作者:
    Miruna
Country : Germany Final Report Summary-ECO 2 ( Sub-seabed CO 2 Storage : Impact on Marine Ecosystems ( ECO 2 ) )
国家:德国 最终报告摘要-ECO 2(海底 CO 2 储存:对海洋生态系统的影响 (ECO 2))
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Boege;Jane Ivy Coons;C. Eur;Aida Maraj;Frank Rottger
  • 通讯作者:
    Frank Rottger

Aida Maraj的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

同伦和Hodge理论的方法在Algebraic Cycle中的应用
  • 批准号:
    11171234
  • 批准年份:
    2011
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
  • 批准号:
    2305373
  • 财政年份:
    2023
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Standard Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
  • 批准号:
    2302447
  • 财政年份:
    2023
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Continuing Grant
Higher Multiplier Ideals and Other Applications of Hodge Theory in Algebraic Geometry
更高乘数理想及霍奇理论在代数几何中的其他应用
  • 批准号:
    2301526
  • 财政年份:
    2023
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Continuing Grant
CAREER: Combinatorial Algebraic Geometry: Flag Varieties, Toric Geometry, and Applications
职业:组合代数几何:旗形簇、环面几何和应用
  • 批准号:
    2142656
  • 财政年份:
    2022
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Continuing Grant
Studies on singular Hermitian metrics via L2 theoretic methods and their applications to algebraic geometry
L2理论方法研究奇异埃尔米特度量及其在代数几何中的应用
  • 批准号:
    21K20336
  • 财政年份:
    2021
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Higher Algebraic Structures in Symplectic Geometry and Applications
辛几何中的高等代数结构及其应用
  • 批准号:
    2105578
  • 财政年份:
    2021
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Standard Grant
Collaborative Research: A Software System for Research in Algebraic Geometry, Commutative Algebra, and their Applications
协作研究:代数几何、交换代数及其应用研究的软件系统
  • 批准号:
    2001267
  • 财政年份:
    2020
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Software System for Research in Algebraic Geometry, Commutative Algebra, and their Applications
协作研究:代数几何、交换代数及其应用研究的软件系统
  • 批准号:
    2001206
  • 财政年份:
    2020
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Continuing Grant
Applications of Lie Theory: Combinatorial Algebraic Geometry and Symmetric Functions
李理论的应用:组合代数几何和对称函数
  • 批准号:
    1954001
  • 财政年份:
    2020
  • 资助金额:
    $ 15.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了