Dynamics, Geometry, and Operator Algebras

动力学、几何和算子代数

基本信息

  • 批准号:
    0600907
  • 负责人:
  • 金额:
    $ 9.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-15 至 2009-06-30
  • 项目状态:
    已结题

项目摘要

AbstractKerrThe program set forth in the proposal involves a nexus of problems aimed at deepening and broadening both recently discoveredand well established connections between dynamics, metricgeometry, and functional analysis. The theory of C*-algebras will provide the basic reference point and meeting ground for the various components.One of the main objectives is to push forward thedevelopment of an abstract theory of C*-dynamics which, in the spirit of topological dynamics, sees as its primary object of study the long-term behavior of systems as captured by properties like entropy and mixing. This project will be pursued by building on links to thelocal theory of Banach spaces and making novel use of the perturbation techniques of C*-algebra classification theory, with a view towards applications in noncommutative metric and differential geometry, C*-algebra structure and representation theory, and operator spacegeometry.One way in which the notion of chaos manifests itself is through the unpredictability exhibited by many complex systems as they evolve with time. This unpredictability can be made mathematically precise in several distinct ways depending on the exact kind of behavior one wantsto emphasize, such as mixing or sensitivity to initial conditions. Determiningthe relationships between the various phenomena encompassed by and related to the term chaos, including most notably entropy, is a major ongoing project in the theory of dynamical systems, and has practical interest for example in the effort to gauge the accuracy of computer simulations. While there exists a vast array of results for the type ofsystems which are used to model classical physics, the theory is much less developed for quantum systems as described mathematically by operator algebras.The broad aim of the proposal is to open up new perspectives on long-termbehavior in quantum dynamics and at the same time to shed new light on classical dynamical phenomena by means of functional-analytic tools.
AbstractKerrThe计划中提出的建议涉及一系列问题,旨在加深和扩大最近发现的和建立良好的动力学,metricgeometry和功能分析之间的联系。C*-代数理论将为各个组成部分提供基本的参考点和交汇点,其主要目标之一是推动C*-动力学的抽象理论的发展,该理论本着拓扑动力学的精神,将研究系统的长期行为(如熵和混合)视为其主要对象。这个项目将通过建立与Banach空间的局部理论的联系和新颖地利用C*-代数分类理论的扰动技术来进行,以期在非交换度量和微分几何,C*-代数结构和表示理论中应用,混沌概念的一种表现方式是通过许多复杂系统所表现出的不可预测性,它们会随着时间而进化这种不可预测性可以通过几种不同的方式在数学上精确化,这取决于人们想要强调的确切行为类型,例如混合或对初始条件的敏感性。确定各种现象之间的关系所涵盖的和有关的长期混沌,包括最显着的熵,是一个重大的正在进行的项目在理论的动力系统,并有实际利益,例如在努力衡量准确性的计算机模拟。虽然存在大量的结果,用于模拟经典物理的系统类型,该理论的发展要少得多的量子系统的数学描述的算子代数。该建议的广泛目标是打开新的视角在量子动力学的长期行为,并在同一时间,通过功能分析工具阐明经典动力学现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Kerr其他文献

Dimension and Dynamical Entropy for Metrized C*-Algebras
Sensor-augmented insulin-pump therapy in type 1 diabetes.
1 型糖尿病的传感器增强胰岛素泵治疗。
Getting to Grips with the Data
掌握数据
A life in the day of Mrs W
  • DOI:
    10.7861/clinmedicine.8-5-515
  • 发表时间:
    2008-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Kerr
  • 通讯作者:
    David Kerr
Sofic measure entropy via finite partitions
  • DOI:
    10.4171/ggd/200
  • 发表时间:
    2011-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Kerr
  • 通讯作者:
    David Kerr

David Kerr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Kerr', 18)}}的其他基金

Operator Algebras, Groups, and Applications to Quantum Information
算子代数、群以及在量子信息中的应用
  • 批准号:
    1901290
  • 财政年份:
    2019
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Workshop in Analysis and Probability
分析与概率研讨会
  • 批准号:
    1800740
  • 财政年份:
    2018
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Ergodic Theory and Operator Algebras
遍历理论和算子代数
  • 批准号:
    1700407
  • 财政年份:
    2017
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Amenabilty, soficity, dynamics, and operator algebras
适应性、社交性、动力学和算子代数
  • 批准号:
    1500593
  • 财政年份:
    2015
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Continuing Grant
Workshop in Analysis and Probability
分析与概率研讨会
  • 批准号:
    1501062
  • 财政年份:
    2015
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Continuing Grant
Independence and dichotomies in dynamics and operator algebras
动力学和算子代数中的独立性和二分性
  • 批准号:
    1162309
  • 财政年份:
    2012
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Operator Algebras, Dynamics, and Classification
算子代数、动力学和分类
  • 批准号:
    0900938
  • 财政年份:
    2009
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2022
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2021
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Discovery Grants Program - Individual
Annual Spring Institute on Non-Commutative Geometry and Operator Algebra 2020
2020 年春季非交换几何与算子代数研究所
  • 批准号:
    2000214
  • 财政年份:
    2020
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Geometry of Polynomials, Operator-Valued Maps, Polar and Non-Commutative Convex Analysis
多项式几何、算子值映射、极坐标和非交换凸分析
  • 批准号:
    RGPIN-2020-06425
  • 财政年份:
    2020
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Discovery Grants Program - Individual
CBMS Conference: K-theory of Operator Algebras and Its Applications to Geometry and Topology
CBMS 会议:算子代数的 K 理论及其在几何和拓扑中的应用
  • 批准号:
    1933327
  • 财政年份:
    2020
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Spring Institute in Noncommutative Geometry and Operator Algebras 2019
Spring 学院非交换几何和算子代数 2019
  • 批准号:
    1855778
  • 财政年份:
    2019
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Spring Institute on Noncommutative Geometry and Operator Algebras 2018
Spring 非交换几何和算子代数研究所 2018
  • 批准号:
    1800204
  • 财政年份:
    2018
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Twisted K-theory, higher geometry and operator algebras
扭曲 K 理论、高等几何和算子代数
  • 批准号:
    DP180100383
  • 财政年份:
    2018
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Discovery Projects
The 2017 Spring Institute on Noncommutative Geometry and Operator Algebras
2017年春季非交换几何与算子代数学院
  • 批准号:
    1700457
  • 财政年份:
    2017
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Conference: Annual Spring Institute on Noncommutative Geometry and Operator Algebras; University of Bonn, Germany; May 17-25, 2016
会议:年度春季非交换几何和算子代数研究所;
  • 批准号:
    1600819
  • 财政年份:
    2016
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了