Independence and dichotomies in dynamics and operator algebras

动力学和算子代数中的独立性和二分性

基本信息

  • 批准号:
    1162309
  • 负责人:
  • 金额:
    $ 17.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The project will consist of a number of research and educational activities centered around the study of randomness, symmetry, paradoxicality, and dimensionality in dynamical systems. The goal is to understand the way that combinatorial, geometric, and topological phenomena interrelate within a newly broadened scope in dynamics that has been opened up by recent advances in entropy theory, the theory of infinite groups, and the classification program for nuclear C*-algebras. The investigations will be rooted in the combinatorial and probabilistic notions of independence and the various dichotomies to which they relate either as a source or as a counterpoint. Both the research and educational components of the program will bridge to several other branches of mathematics including geometric and combinatorial group theory, algebraic topology, convex geometry, and descriptive set theory.The mathematical theory of dynamics seeks to establish a rigorous framework for understanding the kinds of behavior that one might observe in a physical system as it evolves in time. In a chaotic system our ability to make predictions about the future state of the system is limited or null, and there are different ways in which this unpredictability can be made mathematically precise, for example via the notion of entropy. These concepts are all tied to the probabilistic notion of independence, which is exhibited in its most basic form by the repeated tossing of a coin. A general system will typically combine both deterministic and indeterministic aspects, often in an intricate way. This project aims to develop new tools for identifying the presence of independence in its various dynamical guises and its effect on associated mathematical structures such as operator algebras. On the practical side, the interest in such an endeavor lies in its significance for the study of problems in information theory involving code transmission and error correction.
该项目将包括一些围绕动力系统中的随机性、对称性、矛盾性和维度的研究和教育活动。本课程的目的是了解组合、几何和拓扑现象在动力学中新拓宽的范围内相互联系的方式,这一范围是由最近在熵理论、无限群理论和核C*-代数的分类程序中开辟的。调查将植根于独立的组合和概率概念,以及它们作为来源或对立点所涉及的各种二分法。该计划的研究和教育部分将与其他几个数学分支联系起来,包括几何和组合群论、代数拓扑学、凸几何和描述集合论。动力学的数学理论寻求建立一个严格的框架,以理解一个物理系统随着时间的演化可能观察到的行为类型。在一个混乱的系统中,我们对系统未来状态的预测能力是有限的或为零的,有不同的方法可以使这种不可预测性在数学上变得精确,例如通过熵的概念。这些概念都与独立的概率概念联系在一起,这种概念最基本的形式就是反复抛硬币。一个一般的系统通常会以一种错综复杂的方式将确定性和不确定性两个方面结合在一起。该项目旨在开发新的工具,用于识别各种动力学伪装下的独立性的存在及其对相关数学结构(如算子代数)的影响。在实践方面,这种努力的兴趣在于它对研究涉及码传输和纠错的信息论问题具有重要意义。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Kerr其他文献

Dimension and Dynamical Entropy for Metrized C*-Algebras
Sensor-augmented insulin-pump therapy in type 1 diabetes.
1 型糖尿病的传感器增强胰岛素泵治疗。
Sofic measure entropy via finite partitions
  • DOI:
    10.4171/ggd/200
  • 发表时间:
    2011-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Kerr
  • 通讯作者:
    David Kerr
Getting to Grips with the Data
掌握数据
A life in the day of Mrs W
  • DOI:
    10.7861/clinmedicine.8-5-515
  • 发表时间:
    2008-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Kerr
  • 通讯作者:
    David Kerr

David Kerr的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Kerr', 18)}}的其他基金

Operator Algebras, Groups, and Applications to Quantum Information
算子代数、群以及在量子信息中的应用
  • 批准号:
    1901290
  • 财政年份:
    2019
  • 资助金额:
    $ 17.12万
  • 项目类别:
    Standard Grant
Workshop in Analysis and Probability
分析与概率研讨会
  • 批准号:
    1800740
  • 财政年份:
    2018
  • 资助金额:
    $ 17.12万
  • 项目类别:
    Standard Grant
Ergodic Theory and Operator Algebras
遍历理论和算子代数
  • 批准号:
    1700407
  • 财政年份:
    2017
  • 资助金额:
    $ 17.12万
  • 项目类别:
    Standard Grant
Amenabilty, soficity, dynamics, and operator algebras
适应性、社交性、动力学和算子代数
  • 批准号:
    1500593
  • 财政年份:
    2015
  • 资助金额:
    $ 17.12万
  • 项目类别:
    Continuing Grant
Workshop in Analysis and Probability
分析与概率研讨会
  • 批准号:
    1501062
  • 财政年份:
    2015
  • 资助金额:
    $ 17.12万
  • 项目类别:
    Continuing Grant
Operator Algebras, Dynamics, and Classification
算子代数、动力学和分类
  • 批准号:
    0900938
  • 财政年份:
    2009
  • 资助金额:
    $ 17.12万
  • 项目类别:
    Standard Grant
Dynamics, Geometry, and Operator Algebras
动力学、几何和算子代数
  • 批准号:
    0600907
  • 财政年份:
    2006
  • 资助金额:
    $ 17.12万
  • 项目类别:
    Standard Grant

相似海外基金

AF: EAGER: Homomorphism Problems in Digraphs (Dichotomies)
AF:EAGER:有向图中的同态问题(二分法)
  • 批准号:
    1751765
  • 财政年份:
    2017
  • 资助金额:
    $ 17.12万
  • 项目类别:
    Standard Grant
Increasing Civil Society's capacity to deal with changing extreme weather risk: negotiating dichotomies in theory and practice
提高民间社会应对不断变化的极端天气风险的能力:理论与实践中的二分法谈判
  • 批准号:
    ES/N008944/1
  • 财政年份:
    2017
  • 资助金额:
    $ 17.12万
  • 项目类别:
    Research Grant
Analytical approach to combinatorial characterizations of computational dichotomies.
计算二分法组合表征的分析方法。
  • 批准号:
    415305-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 17.12万
  • 项目类别:
    University Undergraduate Student Research Awards
Dark Energy Dichotomies: Observational signatures of matter and gravity based theories.
暗能量二分法:物质和引力理论的观测特征。
  • 批准号:
    0607018
  • 财政年份:
    2006
  • 资助金额:
    $ 17.12万
  • 项目类别:
    Standard Grant
SGER: Three Basic Dichotomies of Social Cognition
SGER:社会认知的三个基本二分法
  • 批准号:
    0074562
  • 财政年份:
    2000
  • 资助金额:
    $ 17.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了