Noncommutative Symmetries and Renormalization

非交换对称性和重整化

基本信息

  • 批准号:
    0601082
  • 负责人:
  • 金额:
    $ 90万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2011-05-31
  • 项目状态:
    已结题

项目摘要

AbstractPopaPopa will continue his investigation of strong rigidity and superrigidity in the context of operator algebras, non-commutative ergodic theory, and descriptive set theory. His previous results provide powerful new approaches to various key problems for operator algebras, such as the Connes' Rigidity Conjecture and Jones' "Millenium Problems". On the other hand, he anticipates that the perspective of operator algebra theory will enable him to make additional important contributions to non-commutative ergodic theory. With his collaborators and students, he expects to find important new links between these different areas. Effros plans to continue his investigation of the combinatorial techniques used in an increasingly broad range of non-commutative analysis. These include the Nica and Speicher approach to free probability theory, as well as the Connes-Kreimer theory of Feynman diagrams. He is currently collaborating with Aguiar, Anshelevich, Nica, and his student Mihai Popa. The discovery of quantum mechanics provided the most dramatic advance in physics during the Twentieth century. The paradoxical notions of this subject are now well understood, and they are playing an increasingly important role in current technology. Quantum theory requires completely new mathematical tools, which were first investigated by von Neumann. The resulting theory of "operator algebras" has become one of the most exciting and influential areas of modern mathematics. Popa intends to investigate some of the central questions of the subject by using results that he has discovered which provide links between operator algebras and such disparate areas as ergodic theory, group theory, and descriptive set theory. Effros will further explore the "combinatorial" notions that are playing an increasingly important role in the theory of Feynman diagrams and quantum probability theory.
AbstractPopaPopa将继续他的调查强刚性和超刚性的背景下,运营商代数,非交换遍历理论和描述集理论。他以前的结果为算子代数的各种关键问题提供了强有力的新方法,如Connes的刚性猜想和Jones的“千禧年问题”。另一方面,他预计的角度来看,算子代数理论将使他作出额外的重要贡献,非交换遍历理论。与他的合作者和学生,他希望找到这些不同领域之间重要的新联系。Effros计划继续他的调查的组合技术中使用的越来越广泛的非交换分析。其中包括尼卡和斯派克的自由概率论方法,以及费曼图的康纳斯-克雷默理论。他目前与Aguiar,Anshelevich,Nica和他的学生Mihai Popa合作。量子力学的发现是二十世纪物理学最引人注目的进步。这一主题的矛盾概念现在已经得到很好的理解,它们在当前的技术中发挥着越来越重要的作用。量子理论需要全新的数学工具,这是冯·诺依曼首先研究的。由此产生的“算子代数”理论已成为现代数学中最令人兴奋和最有影响力的领域之一。波帕打算调查的一些中心问题的主题,使用的结果,他已经发现,提供之间的联系算子代数和不同的领域,如遍历理论,群论,和描述集理论。Effros将进一步探索在费曼图和量子概率论理论中发挥越来越重要作用的“组合”概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sorin Popa其他文献

Some classes of smooth bimodules over IIsub1/sub factors and their associated 1-cohomology spaces
关于 II₁ 型因子上某些光滑双模类及其相关的 1-上同调空间
  • DOI:
    10.1016/j.jfa.2024.110452
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Patrick Hiatt;Jesse Peterson;Sorin Popa
  • 通讯作者:
    Sorin Popa
A unique decomposition result for HT factors with torsion free core
  • DOI:
    10.1016/j.jfa.2006.05.016
  • 发表时间:
    2007-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sorin Popa
  • 通讯作者:
    Sorin Popa
On Ergodic Embeddings of Factors
Non-isomorphism of A∗n,2≤n≤∞, for a non-separable abelian von Neumann algebra A
  • DOI:
    10.1007/s00039-024-00669-8
  • 发表时间:
    2024-02-14
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Rémi Boutonnet;Daniel Drimbe;Adrian Ioana;Sorin Popa
  • 通讯作者:
    Sorin Popa
BAVARD’S DUALITY THEOREM ON CONJUGATION-INVARIANT NORMS
共轭不变范数的巴伐德对偶定理
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. O. K. Awasaki;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy
  • 通讯作者:
    Silvio Levy

Sorin Popa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sorin Popa', 18)}}的其他基金

Ergodic Embeddings, Bimodule Decomposition, and the Structure of Type II1 Factors
遍历嵌入、双模分解和 II1 型因子的结构
  • 批准号:
    1955812
  • 财政年份:
    2020
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Rigidity, Cohomology, and Approximate Embeddings in von Neumann Algebra Factors
冯诺依曼代数因子中的刚性、上同调和近似嵌入
  • 批准号:
    1700344
  • 财政年份:
    2017
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Approximation, deformation-rigidity and classification in II 1 factor framework
II 1 因子框架中的近似、变形刚度和分类
  • 批准号:
    1400208
  • 财政年份:
    2014
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Deformation and Rigidity for Groups, Actions, and von Neumann Algebras
群、作用和冯诺依曼代数的变形和刚度
  • 批准号:
    1101718
  • 财政年份:
    2011
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Proposal for a Conference "Beyond amenability: Groups, Actions and Operator Algebras" to be held at UCLA, May 2006
提议于 2006 年 5 月在加州大学洛杉矶分校召开“超越便利性:群、行动和算子代数”会议
  • 批准号:
    0555672
  • 财政年份:
    2006
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Conference on Recent Developments in von Neumann Algebras; May 14-17, 2003; Los Angeles, CA
冯诺依曼代数最新发展会议;
  • 批准号:
    0315442
  • 财政年份:
    2003
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant

相似海外基金

REU Site: Research in Symmetries at the University of Kentucky
REU 网站:肯塔基大学对称性研究
  • 批准号:
    2349261
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Geometric evolution of spaces with symmetries
具有对称性的空间的几何演化
  • 批准号:
    DP240101772
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Discovery Projects
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
  • 批准号:
    2339682
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
  • 批准号:
    EP/Y006712/1
  • 财政年份:
    2024
  • 资助金额:
    $ 90万
  • 项目类别:
    Fellowship
Canonical Singularities, Generalized Symmetries, and 5d Superconformal Field Theories
正则奇点、广义对称性和 5d 超共形场论
  • 批准号:
    EP/X01276X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Fellowship
Characterization of Systematic Effects in Ultracold Neutron Tests of Fundamental Symmetries
基本对称性超冷中子测试中系统效应的表征
  • 批准号:
    2310015
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
  • 批准号:
    2310279
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
  • 批准号:
    2247202
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Standard Grant
CAREER: Low-energy Nuclear Physics and Fundamental Symmetries with Neutrons and Cryogenic Technologies
职业:低能核物理以及中子和低温技术的基本对称性
  • 批准号:
    2232117
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
  • 批准号:
    2246820
  • 财政年份:
    2023
  • 资助金额:
    $ 90万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了