Rigidity, Cohomology, and Approximate Embeddings in von Neumann Algebra Factors

冯诺依曼代数因子中的刚性、上同调和近似嵌入

基本信息

  • 批准号:
    1700344
  • 负责人:
  • 金额:
    $ 18.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

The driving force behind many exciting developments in mathematics and its applications in recent years has been the dichotomy between structure (order, rigidity, etc.) and randomness (lack of structure, disorder, coarseness). This project concerns a powerful technique, called deformation-rigidity theory, to study these opposing phenomena in the framework of von Neumann algebras, i.e., algebras of infinite matrices, where the product of two elements, A times B, may be different from the product in reverse order, B times A, a fact that reflects the laws of quantum mechanics in particle physics (Heisenberg's Uncertainty Principle). Von Neumann algebras are also related to group theory and ergodic theory, since transformations of spaces give rise to a special class of such algebras called II1 factors. Rigidity in this context occurs when the group of transformations can be recognized by merely knowing its associated II1 factor (which is a very coarse object). The study of rigidity of factors is an interdisciplinary endeavor and can be relevant to many areas of mathematics. It also has applications to computer science, complexity theory, design computer networks, and the theory of error-correcting codes. This research project aims to deepen understanding in this important area.The principal investigator recently added several new tools to this study, namely an approximation/simulation technique, a representation theory, and a cohomology. In this project, he intends to combine all these tools to further study rigidity-versus-randomness phenomena in II1 factors and to tackle several famous problems in this area: the Connes Approximate Embedding (CAE) conjecture, the sofic group problem, the free group factor problem, the paving problem, and calculations of invariants for group-like objects. It should be noted that the CAE conjecture, which predicts that II1 factors can be "simulated" on a computer, would have striking consequences in quantum information theory.
近年来,数学及其应用中许多令人兴奋的发展背后的驱动力一直是结构(秩序,刚性等)之间的二分法。和随机性(缺乏结构、无序、粗糙)。这个项目涉及一个强大的技术,称为变形刚性理论,在冯诺依曼代数的框架下研究这些对立的现象,即,无限矩阵的代数,其中两个元素的乘积,A乘以B,可能不同于相反顺序的乘积,B乘以A,这一事实反映了粒子物理学中的量子力学定律(海森堡的不确定性原理)。冯·诺依曼代数也与群论和遍历理论有关,因为空间的变换产生了一类特殊的代数,称为II 1因子。在这种情况下,当变换组可以通过仅知道其相关的II 1因子(这是一个非常粗糙的对象)来识别时,就会出现刚性。刚性因子的研究是一个跨学科的奋进,可以与数学的许多领域。它也可以应用于计算机科学,复杂性理论,设计计算机网络和纠错码理论。本研究项目旨在加深对这一重要领域的理解。首席研究员最近为这项研究增加了几个新工具,即近似/模拟技术,表示理论和上同调。在这个项目中,他打算将所有这些工具联合收割机,以进一步研究II 1因子中的刚性与随机性现象,并解决这一领域的几个著名问题:Connes近似嵌入(CAE)猜想,sofic群问题,自由群因子问题,铺路问题,以及类群对象的不变量计算。值得注意的是,CAE猜想预测II 1因子可以在计算机上“模拟”,这将在量子信息理论中产生惊人的后果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sorin Popa其他文献

Some classes of smooth bimodules over IIsub1/sub factors and their associated 1-cohomology spaces
关于 II₁ 型因子上某些光滑双模类及其相关的 1-上同调空间
  • DOI:
    10.1016/j.jfa.2024.110452
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Patrick Hiatt;Jesse Peterson;Sorin Popa
  • 通讯作者:
    Sorin Popa
A unique decomposition result for HT factors with torsion free core
  • DOI:
    10.1016/j.jfa.2006.05.016
  • 发表时间:
    2007-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Sorin Popa
  • 通讯作者:
    Sorin Popa
On Ergodic Embeddings of Factors
Non-isomorphism of A∗n,2≤n≤∞, for a non-separable abelian von Neumann algebra A
  • DOI:
    10.1007/s00039-024-00669-8
  • 发表时间:
    2024-02-14
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Rémi Boutonnet;Daniel Drimbe;Adrian Ioana;Sorin Popa
  • 通讯作者:
    Sorin Popa
BAVARD’S DUALITY THEOREM ON CONJUGATION-INVARIANT NORMS
共轭不变范数的巴伐德对偶定理
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. O. K. Awasaki;Paul Balmer;Robert Finn;Sorin Popa;Vyjayanthi Chari;Kefeng Liu;Igor Pak;Paul Yang;Daryl Cooper;Jiang;Jie Qing;Silvio Levy
  • 通讯作者:
    Silvio Levy

Sorin Popa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sorin Popa', 18)}}的其他基金

Ergodic Embeddings, Bimodule Decomposition, and the Structure of Type II1 Factors
遍历嵌入、双模分解和 II1 型因子的结构
  • 批准号:
    1955812
  • 财政年份:
    2020
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Approximation, deformation-rigidity and classification in II 1 factor framework
II 1 因子框架中的近似、变形刚度和分类
  • 批准号:
    1400208
  • 财政年份:
    2014
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Deformation and Rigidity for Groups, Actions, and von Neumann Algebras
群、作用和冯诺依曼代数的变形和刚度
  • 批准号:
    1101718
  • 财政年份:
    2011
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Noncommutative Symmetries and Renormalization
非交换对称性和重整化
  • 批准号:
    0601082
  • 财政年份:
    2006
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Proposal for a Conference "Beyond amenability: Groups, Actions and Operator Algebras" to be held at UCLA, May 2006
提议于 2006 年 5 月在加州大学洛杉矶分校召开“超越便利性:群、行动和算子代数”会议
  • 批准号:
    0555672
  • 财政年份:
    2006
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Conference on Recent Developments in von Neumann Algebras; May 14-17, 2003; Los Angeles, CA
冯诺依曼代数最新发展会议;
  • 批准号:
    0315442
  • 财政年份:
    2003
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
  • 批准号:
    2340239
  • 财政年份:
    2024
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Symplectic cohomology and quantum cohomology of Fano manifolds
Fano流形的辛上同调和量子上同调
  • 批准号:
    2306204
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Cohomology theories for algebraic varieties
代数簇的上同调理论
  • 批准号:
    2883661
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Studentship
LEAPS-MPS: Quantum Field Theories and Elliptic Cohomology
LEAPS-MPS:量子场论和椭圆上同调
  • 批准号:
    2316646
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Cohomology of arithmetic groups in GL(2) over definite quaternion algebras
GL(2) 定四元数代数上算术群的上同调
  • 批准号:
    2884658
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Studentship
Dual complexes and weight filtrations: Applications to cohomology of moduli spaces and invariants of singularities
对偶复形和权重过滤:模空间上同调和奇点不变量的应用
  • 批准号:
    2302475
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
  • 批准号:
    EP/W036320/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Research Grant
Research on commutative rings via etale cohomology theory
基于etale上同调理论的交换环研究
  • 批准号:
    23K03077
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Matrix Approximations, Stability of Groups and Cohomology Invariants
矩阵近似、群稳定性和上同调不变量
  • 批准号:
    2247334
  • 财政年份:
    2023
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Topological Hopf Algebras and Their cyclic cohomology
拓扑 Hopf 代数及其循环上同调
  • 批准号:
    RGPIN-2018-04039
  • 财政年份:
    2022
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了