Special Meeting: Fields Program in Geometric Applications of Homotopy Theory - International US Participation
特别会议:同伦理论几何应用领域计划 - 国际美国参与
基本信息
- 批准号:0603411
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-09-01 至 2007-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The applications of homotopy theory have always defined the most compelling aspects of the subject. The purpose of the Fields program is to study and develop new applications of homotopy theory in algebraic geometry, mathematical physics and related disciplines. The homotopy theories of simplicial sheaves and presheaves are the foundation for motivic homotopy theory, and as such have contributed to the major calculational successes of the last decade in algebraic K-theory. In recent years, presheaves of spectra on the stack of formal group laws have emerged in the definitions of elliptic cohomology theories and topological modular forms. Simplicial sets and related combinatorial constructions are also the foundation for higher category theory. All of these subjects have both current and intended applications in mathematical physics. Similar ideas are present in new applications of homotopy theory in algebraic combinatorics and computer science, particularly in analysis of hyperplane arrangements or graph colouring, and in models for concurrent behaviour of parallel processing systems, computational geometry, and complexity.The program will take place at the Fields Institute, which will mount an intensive program on Geometric Applications of Homotopy Theory during the period January-June 2007. NSF funding will allow a significant number of young U.S. researchers (postdocs, junior faculty, and graduate students) to participate in this program, and receive training in this area. Homotopy theory is a core topic within the mathematical subject of topology, but as described above, it impacts on a broad range of fields, including algebraic geometry, logic and computer science, and mathematical physics (eg in topological quantum field theory). Bringing together researchers in homotopy theory with those from the areas of application will stimulate exciting progress in both fields.
同伦理论的应用总是定义了这个问题最引人注目的方面。菲尔兹计划的目的是研究和开发同伦理论在代数几何,数学物理和相关学科中的新应用。单纯层和预层的同伦理论是动机同伦理论的基础,因此在过去的十年里,它对代数K理论的主要计算成功做出了贡献。近年来,在椭圆上同调理论和拓扑模形式的定义中出现了形式群律栈上的谱的预层。单纯集和相关的组合构造也是高级范畴理论的基础。所有这些主题在数学物理中都有当前和预期的应用。类似的想法也出现在同伦理论在代数组合学和计算机科学中的新应用中,特别是在超平面排列或图形着色的分析中,以及在并行处理系统的并发行为模型、计算几何和复杂性中。该课程将在2007年1月至6月期间进行同伦理论的几何应用的强化课程。美国国家科学基金会的资助将使大量年轻的美国研究人员(博士后,初级教师和研究生)参加这一计划,并接受这一领域的培训。同伦理论是数学拓扑学中的一个核心主题,但如上所述,它对广泛的领域产生了影响,包括代数几何,逻辑和计算机科学,以及数学物理(例如拓扑量子场论)。把同伦理论的研究人员与应用领域的研究人员聚集在一起,将刺激这两个领域令人兴奋的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gunnar Carlsson其他文献
The Role of Geometry in Convolutional Neural Networks for Medical Imaging
几何在医学成像卷积神经网络中的作用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yashbir Singh;Colleen Farrelly;Quincy A. Hathaway;Ashok Choudhary;Gunnar Carlsson;Bradley Erickson;T. Leiner - 通讯作者:
T. Leiner
Current Topological and Machine Learning Applications for Bias Detection in Text
当前用于文本偏差检测的拓扑和机器学习应用
- DOI:
10.1109/icspis60075.2023.10343824 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Colleen Farrelly;Yashbir Singh;Quincy A. Hathaway;Gunnar Carlsson;Ashok Choudhary;Rahul Paul;Gianfranco Doretto;Yassine Himeur;Shadi Atalla;W. Mansoor - 通讯作者:
W. Mansoor
Topological methods for data modelling
用于数据建模的拓扑方法
- DOI:
10.1038/s42254-020-00249-3 - 发表时间:
2020-11-10 - 期刊:
- 影响因子:39.500
- 作者:
Gunnar Carlsson - 通讯作者:
Gunnar Carlsson
The shape of biomedical data
- DOI:
10.1016/j.coisb.2016.12.012 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:
- 作者:
Gunnar Carlsson - 通讯作者:
Gunnar Carlsson
The integral K-theoretic Novikov conjecture for groups with finite asymptotic dimension THANKSREF="*" ID="*"The authors gratefully acknowledge support from the National Science Foundation.
- DOI:
10.1007/s00222-004-0401-4 - 发表时间:
2004-12-22 - 期刊:
- 影响因子:3.600
- 作者:
Gunnar Carlsson;Boris Goldfarb - 通讯作者:
Boris Goldfarb
Gunnar Carlsson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gunnar Carlsson', 18)}}的其他基金
III: Medium: Collaborative Research: Geometric Network Analysis Tools: Algorithmic Methods for Identifying Structure in Large Informatics Graphs
III:媒介:协作研究:几何网络分析工具:识别大型信息学图中结构的算法方法
- 批准号:
0964242 - 财政年份:2010
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
III: Workshop support for meeting on algorithms for modern massive data sets, MMDS 2010
III:为现代海量数据集算法会议提供研讨会支持,MMDS 2010
- 批准号:
0949412 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Investigations in the application of homotopy theory
同伦理论的应用研究
- 批准号:
0905823 - 财政年份:2009
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
FRG: Algebraic topology as a tool in feature location, feature classification, shape recognition, and shape description
FRG:代数拓扑作为特征定位、特征分类、形状识别和形状描述的工具
- 批准号:
0354543 - 财政年份:2004
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Homotopy Theoretic Investigations in Higher K-theory, High-dimensional Data Analysis, and High Dimensional Manifold Theory
高阶 K 理论、高维数据分析和高维流形理论中的同伦理论研究
- 批准号:
0406992 - 财政年份:2004
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
Algebraic Topological Methods in Computer Science
计算机科学中的代数拓扑方法
- 批准号:
0106804 - 财政年份:2001
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Representation of Galois groups and descent in algebraic K-theory
代数 K 理论中伽罗瓦群的表示和下降
- 批准号:
0104162 - 财政年份:2001
- 资助金额:
$ 5万 - 项目类别:
Continuing Grant
FRG: Topological methods in data analysis
FRG:数据分析中的拓扑方法
- 批准号:
0101364 - 财政年份:2001
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Equivariant stable homotopy theory and K-theory
等变稳定同伦理论和K理论
- 批准号:
0075689 - 财政年份:2000
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Topology, Geometry and Algebra: Interactions and New Directions
拓扑、几何和代数:相互作用和新方向
- 批准号:
9970944 - 财政年份:1999
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
Proposal for DPF2015: Meeting of the American Physical Society Division of Particle and Fields at the University of Michigan; August 4-8, 2015.
DPF2015 提案:美国物理学会粒子与场分部在密歇根大学举行的会议;
- 批准号:
1505201 - 财政年份:2015
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Special Meeting: Torsors, Nonassociative algebras and Cohomological invariants Thematic Program at the Fields Institute Toronto January - June 2013
特别会议:Torsors、非结合代数和上同调不变量 多伦多菲尔兹研究所主题项目 2013 年 1 月至 6 月
- 批准号:
1222637 - 财政年份:2012
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
American Physical Society Division of Particles and Fields 2011 Meeting at Brown University, August 9-13, 2011, Providence, RI
美国物理学会粒子与场分部 2011 年会议于布朗大学举行,2011 年 8 月 9 日至 13 日,罗德岛州普罗维登斯
- 批准号:
1138293 - 财政年份:2011
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Special Meeting: Fields Program on New Trends in Harmonic Analysis - International U.S. Participation
特别会议:谐波分析新趋势领域计划 - 美国国际参与
- 批准号:
0648811 - 财政年份:2007
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Special Meeting: Fields Operator Algebras Program--International US Participation
特别会议:场算子代数项目--美国国际参与
- 批准号:
0649696 - 财政年份:2007
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Special Meeting: Fields Cryptography Program - International U.S. Participation
特别会议:菲尔兹密码学计划 - 美国国际参与
- 批准号:
0602281 - 财政年份:2006
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
American Physical Society 2000 Meeting: Division of Particles and Fields (DPF2000); Columbus, OH; August 9-12, 2000
美国物理学会 2000 年会议:粒子与场分部 (DPF2000);
- 批准号:
0076077 - 财政年份:2000
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Eighth Meeting of the Division of Particles and Fields of the American Physical Society; August 2-6, 1994
美国物理学会粒子与场分部第八次会议;
- 批准号:
9318871 - 财政年份:1994
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Seventh Meeting of the APS Division of Particles and Fields (DPF 92); Batavia, Illinois; November 10-14, l992
APS 粒子与场分部第七次会议(DPF 92);
- 批准号:
9212773 - 财政年份:1992
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Joint Meeting of Divisions of Particles and Fields of the American Physical Society and Canadian Association of Physicists, Vancouver, B.C., June 17 - 23, 1991
美国物理学会和加拿大物理学家协会粒子场分部联席会议,不列颠哥伦比亚省温哥华,1991 年 6 月 17 日至 23 日
- 批准号:
93302-1990 - 财政年份:1991
- 资助金额:
$ 5万 - 项目类别:
Conference Grants (H)