FRG: Topological methods in data analysis

FRG:数据分析中的拓扑方法

基本信息

  • 批准号:
    0101364
  • 负责人:
  • 金额:
    $ 99.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-07-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

DMS-0101364Gunnar CarlssonThe overall goal of this project is to develop flexible topological methods which will allow the analysis of data which is difficult to analyze using classical linear methods. Data obtained by sampling from highly curved manifolds or singular algebraic varieties in Euclidean space are typical examples where our methods will be useful. We intend to develop and refine two pieces of software which have been written by members of our research group, ISOMAP (Tenenbaum) and PLEX (de Silva-Carlsson). ISOMAP is a tool for dimension reduction and parameterization of high dimensional data sets, and PLEX is a homology computing tool which we will use in locating and analyzing singular points in data sets, as well as estimating dimension in situations where standard methods do not work well. We plan to extend the range of applicability of both tools, in the case of ISOMAP by studying embeddings into spaces with non-Euclidean metrics, and in the case of PLEX by building in the Mayer-Vietoris spectral sequence as a tool Both ISOMAP and PLEX will be adapted for parallel computing. We will also begin the theoretical study of statistical questions relating to topology. For instance, we will initiate the study of higher dimensional homology of subsets sampled from Euclidean space under various sampling hypotheses. The key object of study will be the family of Cech complexes constructed using the distance function in Euclidean space together with a randomly chosen finite set of points in Euclidean space. The goal of this project is to develop tools for understanding data sets which are not easy to understand using standard methods. This kind of data might include singular points, or might be strongly curved. The data is also high dimensional, in the sense that each data point has many coordinates. For instance, we might have a data set whose points each of which is an image, which has one coordinate for each pixel. Many standard tools rely on linear approximations, which do not work well in strongly curved or singular problems. The kind of tools we have in mind are in part topological, in the sense that they measure more qualitative properties of the spaces involved, such as connectedness, or the number of holes in a space, and so on. This group of methods has the capability of recognizing the number of parameters required to describe a space, without actually parameterizing it. These methods also have the capability of recognizing singular points (like points where two non-parallel planes or non-parallel lines intersect), without actually having to construct coordinates on the space. We will also be further developing and refining methods we have already constructed which can actually find good parameterizations for many high dimensional data sets. Both projects will involve the adaptation for the computer of many methods which have heretofore been used in by-hand calculations for solving theoretical problems. We will also initiate the theoretical development of topological tools in a setting which includes errors and sampling.
DMS-0101364 Gunnar Carlsson本项目的总体目标是开发灵活的拓扑方法,以便分析难以使用经典线性方法分析的数据。从欧氏空间中的高度弯曲的流形或奇异代数簇采样得到的数据是我们的方法将是有用的典型例子。 我们打算开发和完善两个软件,这两个软件是由我们的研究小组成员编写的,ISOMAP(Tenenbaum)和PLEX(de Silva-Carlsson)。 ISOMAP是一个高维数据集的降维和参数化工具,PLEX是一个同源计算工具,我们将使用它来定位和分析数据集中的奇异点,以及在标准方法不起作用的情况下估计维数。 我们计划扩展这两种工具的适用范围,在ISOMAP的情况下,通过研究嵌入到空间与非欧几里德度量,并在PLEX的情况下,通过建立在迈耶-Vietoris谱序列作为一种工具。ISOMAP和PLEX都将适用于并行计算。我们也将开始与拓扑学有关的统计问题的理论研究。 例如,我们将在各种抽样假设下,开始研究从欧几里得空间抽样的子集的高维同调。 研究的主要对象将是家庭的切赫复杂的距离函数在欧几里得空间中的随机选择的有限集的点一起构建。 该项目的目标是开发工具,用于理解使用标准方法不容易理解的数据集。 这类数据可能包含奇点,或者可能是强烈弯曲的。 数据也是高维的,在这个意义上,每个数据点有许多坐标。 例如,我们可能有一个数据集,它的每个点都是一个图像,每个像素都有一个坐标。 许多标准工具依赖于线性近似,这在强弯曲或奇异问题中不能很好地工作。 我们所考虑的这类工具在某种程度上是拓扑的,因为它们测量所涉及的空间的更多定性性质,如连通性或空间中的洞的数量等,这类方法能够识别描述空间所需的参数的数量,而无需实际将其参数化。 这些方法还具有识别奇异点(如两个非平行平面或非平行线相交的点)的能力,而无需实际构建空间上的坐标。 我们还将进一步发展和完善我们已经构建的方法,这些方法实际上可以为许多高维数据集找到良好的参数化。 这两个项目都将涉及把迄今为止用于解决理论问题的手工计算的许多方法改编成计算机。 我们还将开始在一个设置,其中包括错误和采样的拓扑工具的理论发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gunnar Carlsson其他文献

The Role of Geometry in Convolutional Neural Networks for Medical Imaging
几何在医学成像卷积神经网络中的作用
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yashbir Singh;Colleen Farrelly;Quincy A. Hathaway;Ashok Choudhary;Gunnar Carlsson;Bradley Erickson;T. Leiner
  • 通讯作者:
    T. Leiner
Current Topological and Machine Learning Applications for Bias Detection in Text
当前用于文本偏差检测的拓扑和机器学习应用
Topological methods for data modelling
用于数据建模的拓扑方法
  • DOI:
    10.1038/s42254-020-00249-3
  • 发表时间:
    2020-11-10
  • 期刊:
  • 影响因子:
    39.500
  • 作者:
    Gunnar Carlsson
  • 通讯作者:
    Gunnar Carlsson
The shape of biomedical data
  • DOI:
    10.1016/j.coisb.2016.12.012
  • 发表时间:
    2017-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gunnar Carlsson
  • 通讯作者:
    Gunnar Carlsson
The integral K-theoretic Novikov conjecture for groups with finite asymptotic dimension THANKSREF="*" ID="*"The authors gratefully acknowledge support from the National Science Foundation.
  • DOI:
    10.1007/s00222-004-0401-4
  • 发表时间:
    2004-12-22
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Gunnar Carlsson;Boris Goldfarb
  • 通讯作者:
    Boris Goldfarb

Gunnar Carlsson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gunnar Carlsson', 18)}}的其他基金

III: Medium: Collaborative Research: Geometric Network Analysis Tools: Algorithmic Methods for Identifying Structure in Large Informatics Graphs
III:媒介:协作研究:几何网络分析工具:识别大型信息学图中结构的算法方法
  • 批准号:
    0964242
  • 财政年份:
    2010
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Continuing Grant
III: Workshop support for meeting on algorithms for modern massive data sets, MMDS 2010
III:为现代海量数据集算法会议提供研讨会支持,MMDS 2010
  • 批准号:
    0949412
  • 财政年份:
    2009
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
Investigations in the application of homotopy theory
同伦理论的应用研究
  • 批准号:
    0905823
  • 财政年份:
    2009
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Continuing Grant
Special Meeting: Fields Program in Geometric Applications of Homotopy Theory - International US Participation
特别会议:同伦理论几何应用领域计划 - 国际美国参与
  • 批准号:
    0603411
  • 财政年份:
    2006
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
FRG: Algebraic topology as a tool in feature location, feature classification, shape recognition, and shape description
FRG:代数拓扑作为特征定位、特征分类、形状识别和形状描述的工具
  • 批准号:
    0354543
  • 财政年份:
    2004
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
Homotopy Theoretic Investigations in Higher K-theory, High-dimensional Data Analysis, and High Dimensional Manifold Theory
高阶 K 理论、高维数据分析和高维流形理论中的同伦理论研究
  • 批准号:
    0406992
  • 财政年份:
    2004
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Continuing Grant
Algebraic Topological Methods in Computer Science
计算机科学中的代数拓扑方法
  • 批准号:
    0106804
  • 财政年份:
    2001
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
Representation of Galois groups and descent in algebraic K-theory
代数 K 理论中伽罗瓦群的表示和下降
  • 批准号:
    0104162
  • 财政年份:
    2001
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Continuing Grant
Equivariant stable homotopy theory and K-theory
等变稳定同伦理论和K理论
  • 批准号:
    0075689
  • 财政年份:
    2000
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
Topology, Geometry and Algebra: Interactions and New Directions
拓扑、几何和代数:相互作用和新方向
  • 批准号:
    9970944
  • 财政年份:
    1999
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327892
  • 财政年份:
    2024
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327893
  • 财政年份:
    2024
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Continuing Grant
LEAPS-MPS: Applications of Algebraic and Topological Methods in Graph Theory Throughout the Sciences
LEAPS-MPS:代数和拓扑方法在图论中在整个科学领域的应用
  • 批准号:
    2313262
  • 财政年份:
    2023
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Standard Grant
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
  • 批准号:
    2882199
  • 财政年份:
    2023
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Studentship
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10884028
  • 财政年份:
    2023
  • 资助金额:
    $ 99.64万
  • 项目类别:
Topological Methods for Learning to Steer Self-Organised Growth
学习引导自组织增长的拓扑方法
  • 批准号:
    EP/X017753/1
  • 财政年份:
    2023
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Research Grant
DMS/NIGMS 1: Topological Dynamics Models of Protein Function
DMS/NIGMS 1:蛋白质功能的拓扑动力学模型
  • 批准号:
    10794436
  • 财政年份:
    2023
  • 资助金额:
    $ 99.64万
  • 项目类别:
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10885376
  • 财政年份:
    2023
  • 资助金额:
    $ 99.64万
  • 项目类别:
Phase transitions, criticality and non-trivial topological states in non-equilibrium driven-dissipative systems using analytical methods and tensor ne
使用分析方法和张量 ne 的非平衡驱动耗散系统中的相变、临界性和非平凡拓扑态
  • 批准号:
    2731618
  • 财政年份:
    2022
  • 资助金额:
    $ 99.64万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了