Homotopy Theoretic Investigations in Higher K-theory, High-dimensional Data Analysis, and High Dimensional Manifold Theory
高阶 K 理论、高维数据分析和高维流形理论中的同伦理论研究
基本信息
- 批准号:0406992
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0406992Gunnar E. CarlssonThis project concerns the descent problem in higher algebraic K-theory. There has been much recent progress in identifying the initial term of a spectral sequence converging to the K-groups of a field, notably by V. Voevodsky and A. Suslin. This project is an attempt to prove that the algebraic K-theory spectrum, not just its homotopy groups, can be described purely in terms of the absolute Galois group of the field in question, and the algebraic K-theory spectrum of an algebraically closed field. The key ingredients are the equivariant K-theory spectrum attached to complex representations of the absolute Galois group, which can be regarded as a highly structured ring spectrum, and a derived version of a completion construction at an augmentation ideal. The model has already been developed, and what remains is to prove the agreement of the model with algebraic K-theory of the field in general. The validity of these results should give striking connections between, on the one hand, the derived completion of the representation ring of the absolute Galois group, and on the other the Milnor K-groups of the field, which are groups defined directly from the arithmetic of the field. This project seeks to connect the behavior of the arithmetic in a field (an algebraic object which generalizes our usual notions of real, complex, and rational numbers) and the behavior of so-called complex representations of a group of symmetries of a larger field containing all possible solutions to algebraic equations of the original field. These representations contain a great deal of geometric information, and drawing this kind of connection (between geometric and arithmetic information) has been a longstanding theme in mathematics. The relationship between such seemingly distinct kinds of ideas has been responsible for many of the recent striking developments in arithmetic and algebraic geometry, including Delinge's proof of the so-called Weil conjectures as well as the recent work on the Geometric Langlands program. The present project represents another facet of this circle of ideas.
Gunnar E. CarlssonThis project concerns the descent problem in higher algebraic K-theory. 在确定收敛于域的K-群的谱序列的首项方面,最近有许多进展,特别是V. Voevodsky和A.苏斯林 这个项目试图证明代数K-理论谱,而不仅仅是它的同伦群,可以纯粹用所讨论的域的绝对伽罗瓦群和代数闭域的代数K-理论谱来描述。 关键成分是等变K-理论谱附加到绝对伽罗瓦群的复表示,这可以被视为一个高度结构化的环谱,并在一个增广理想的完成建设的衍生版本。该模型已经被开发出来,剩下的就是证明该模型与代数K理论的一般领域的协议。 这些结果的有效性应给予惊人的联系,一方面,派生完成的代表环的绝对伽罗瓦组,并在其他米尔诺K群的领域,这是团体直接定义的算术领域。这个项目旨在连接的算术行为在一个领域(代数对象,概括了我们通常的概念,真实的,复杂的,有理数)和行为的所谓的复杂表示的一组对称的一个更大的领域,包含所有可能的解决方案,以代数方程的原始领域。 这些表示包含了大量的几何信息,并且绘制这种(几何和算术信息之间的)联系一直是数学中的一个长期主题。这种看似不同的想法之间的关系一直负责许多最近引人注目的发展算术和代数几何,包括Delinge的证明所谓的韦尔几何以及最近的工作几何朗兰兹计划。 本项目代表了这一思想圈的另一个方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gunnar Carlsson其他文献
The Role of Geometry in Convolutional Neural Networks for Medical Imaging
几何在医学成像卷积神经网络中的作用
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yashbir Singh;Colleen Farrelly;Quincy A. Hathaway;Ashok Choudhary;Gunnar Carlsson;Bradley Erickson;T. Leiner - 通讯作者:
T. Leiner
Current Topological and Machine Learning Applications for Bias Detection in Text
当前用于文本偏差检测的拓扑和机器学习应用
- DOI:
10.1109/icspis60075.2023.10343824 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Colleen Farrelly;Yashbir Singh;Quincy A. Hathaway;Gunnar Carlsson;Ashok Choudhary;Rahul Paul;Gianfranco Doretto;Yassine Himeur;Shadi Atalla;W. Mansoor - 通讯作者:
W. Mansoor
Topological methods for data modelling
用于数据建模的拓扑方法
- DOI:
10.1038/s42254-020-00249-3 - 发表时间:
2020-11-10 - 期刊:
- 影响因子:39.500
- 作者:
Gunnar Carlsson - 通讯作者:
Gunnar Carlsson
The shape of biomedical data
- DOI:
10.1016/j.coisb.2016.12.012 - 发表时间:
2017-02-01 - 期刊:
- 影响因子:
- 作者:
Gunnar Carlsson - 通讯作者:
Gunnar Carlsson
The integral K-theoretic Novikov conjecture for groups with finite asymptotic dimension THANKSREF="*" ID="*"The authors gratefully acknowledge support from the National Science Foundation.
- DOI:
10.1007/s00222-004-0401-4 - 发表时间:
2004-12-22 - 期刊:
- 影响因子:3.600
- 作者:
Gunnar Carlsson;Boris Goldfarb - 通讯作者:
Boris Goldfarb
Gunnar Carlsson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gunnar Carlsson', 18)}}的其他基金
III: Medium: Collaborative Research: Geometric Network Analysis Tools: Algorithmic Methods for Identifying Structure in Large Informatics Graphs
III:媒介:协作研究:几何网络分析工具:识别大型信息学图中结构的算法方法
- 批准号:
0964242 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
III: Workshop support for meeting on algorithms for modern massive data sets, MMDS 2010
III:为现代海量数据集算法会议提供研讨会支持,MMDS 2010
- 批准号:
0949412 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Investigations in the application of homotopy theory
同伦理论的应用研究
- 批准号:
0905823 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
Special Meeting: Fields Program in Geometric Applications of Homotopy Theory - International US Participation
特别会议:同伦理论几何应用领域计划 - 国际美国参与
- 批准号:
0603411 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Algebraic topology as a tool in feature location, feature classification, shape recognition, and shape description
FRG:代数拓扑作为特征定位、特征分类、形状识别和形状描述的工具
- 批准号:
0354543 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Standard Grant
Algebraic Topological Methods in Computer Science
计算机科学中的代数拓扑方法
- 批准号:
0106804 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Representation of Galois groups and descent in algebraic K-theory
代数 K 理论中伽罗瓦群的表示和下降
- 批准号:
0104162 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
FRG: Topological methods in data analysis
FRG:数据分析中的拓扑方法
- 批准号:
0101364 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Equivariant stable homotopy theory and K-theory
等变稳定同伦理论和K理论
- 批准号:
0075689 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Topology, Geometry and Algebra: Interactions and New Directions
拓扑、几何和代数:相互作用和新方向
- 批准号:
9970944 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Chemically specific polymer models with field-theoretic simulations
职业:具有场论模拟的化学特定聚合物模型
- 批准号:
2337554 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
- 批准号:
2340006 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
- 批准号:
2415445 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Measure theoretic properties of phase field models for surface evolution equations
测量表面演化方程相场模型的理论特性
- 批准号:
23K03180 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Information Theoretic Approach to Explore Malware Payload and Command and Control
探索恶意软件有效负载和命令与控制的信息论方法
- 批准号:
2887741 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship