Structure and algorithms, between logic and algebra
结构与算法,逻辑与代数之间
基本信息
- 批准号:0604065
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-15 至 2010-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
McKenzie will investigate algorithmicquestions which involve properties of finite algebras determined by thevarieties and quasi-varieties they generate, andstructural questions which involve the necessary algebraic propertiesthat must be true throughout a locally finite variety or quasi-variety as a consequence of that class possessing some natural property defined through logical or set-theoretic means. The outstanding algorithmic questions: Is there an algorithm todetermine if the quasi-equations valid in a finite algebra F are finitely based? Is there an algorithm to determine if the quasi-variety generated by F possesses a natural duality? Is the class of finite algebras possessing a finite equational basis recursively enumerable? Is the class of finite algebras generating a residually large variety recursively enumerable? Among the important structural questions: What collection of algebraicproperties is necessary and sufficient for a finitely generated variety tobe finitely decidable, or to have few models? He will work on an algebraic conjecture that, if proved, would establish animportant case of thedichotomy conjecture for the constraint satisfaction problem oftheoretical computer science: every finite algebra F in a meet semi-distributivevariety has finite relational width.The principal investigator believes that researchinto the interplay between, on the one hand, the existence or nonexistenceof algorithms to recognize fundamental properties of finite algebras, and on the other hand, the levels of structural complexity manifested in the algebras---what this project is all about---has the potential not only to expand our understanding of the structural possibilities in finite algebraic systems (which it has already done), but to producefundamental breakthroughs in theoretical computer science.The most likely place for this to occur soon is in the algebraic approachto the constraint satisfaction problem (CSP).Specific instances of the constraint satisfaction problem, including graph homomorphism problems,are ubiquitous in many areas of artificial intelligence, computerscience, database theory, scheduling, networking, hardware verification, etc. The algebraic approach puts some of the most developed areas ofuniversal algebra, especially the machinery of tame congruence theorydeveloped by the principal investigator, to work in the study of combinatorial problems related to the CSP;and it may have potential applicationsin the study of other computational paradigms, such as approximation and randomized algorithms, and quantum computation.
麦肯齐将研究算法问题,这些问题涉及由它们生成的簇和准簇决定的有限代数的属性,以及涉及必要的代数属性的结构问题,这些代数属性在整个局部有限簇或准簇中必须为真,因为该类拥有通过逻辑或集合论手段定义的一些自然属性。 突出的算法问题:是否有一种算法可以确定有限代数 F 中有效的拟方程是否是有限基的? 有没有一种算法可以判断F生成的准品种是否具有自然对偶性? 具有有限方程基的有限代数类是否可递归枚举? 生成剩余大变量的有限代数类是否可递归枚举? 重要的结构问题包括:什么样的代数性质的集合对于有限生成的簇是有限可判定的或具有很少的模型是必要且充分的? 他将研究一个代数猜想,如果该猜想得到证实,将为理论计算机科学的约束满足问题建立二分猜想的一个重要案例:满足半分配簇中的每个有限代数 F 都具有有限的关系宽度。 首席研究员认为,一方面研究算法是否存在之间的相互作用,以识别基本原理 有限代数的性质,另一方面,代数中体现的结构复杂性水平——这个项目的全部内容——不仅有可能扩展我们对有限代数系统中结构可能性的理解(它已经做到了),而且有可能在理论计算机科学中产生根本性突破。最有可能很快发生这种情况的地方是在约束满足问题的代数方法中 (CSP)。约束满足问题的具体实例,包括图同态问题,在人工智能、计算机科学、数据库理论、调度、网络、硬件验证等许多领域中普遍存在。代数方法将通用代数的一些最发达的领域,特别是由主要研究者开发的驯服同态理论机制,用于研究 与 CSP 相关的组合问题;并且它可能在其他计算范式的研究中具有潜在的应用,例如近似和随机算法以及量子计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph McKenzie其他文献
On boolean functions and connected sets
- DOI:
10.1007/bf01694182 - 发表时间:
1971-09-01 - 期刊:
- 影响因子:0.400
- 作者:
Ralph McKenzie;Jan Mycielski;David Thompson - 通讯作者:
David Thompson
Nilpotent and solvable radicals in locally finite congruence modular varieties
- DOI:
10.1007/bf01195264 - 发表时间:
1987-10-01 - 期刊:
- 影响因子:0.600
- 作者:
Ralph McKenzie - 通讯作者:
Ralph McKenzie
Locally finite varieties with large free spectra
- DOI:
10.1007/s00012-002-8191-2 - 发表时间:
2002-07-01 - 期刊:
- 影响因子:0.600
- 作者:
Ralph McKenzie - 通讯作者:
Ralph McKenzie
Definability in Substructure Orderings, II: Finite Ordered Sets
- DOI:
10.1007/s11083-010-9141-9 - 发表时间:
2010-01-23 - 期刊:
- 影响因子:0.300
- 作者:
Jaroslav Ježek;Ralph McKenzie - 通讯作者:
Ralph McKenzie
A note on residually small varieties of semigroups
- DOI:
10.1007/bf01194524 - 发表时间:
1983-12-01 - 期刊:
- 影响因子:0.600
- 作者:
Ralph McKenzie - 通讯作者:
Ralph McKenzie
Ralph McKenzie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph McKenzie', 18)}}的其他基金
Collaborative Research: Algebra and Algorithms, Structure and Complexity Theory
合作研究:代数与算法、结构与复杂性理论
- 批准号:
1500174 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
International Conference on Order, Algebra and Logics
国际秩序、代数和逻辑会议
- 批准号:
0710339 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Structure and Algorithms, Between Logic and Algebra
结构与算法,逻辑与代数之间
- 批准号:
0245622 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
Algebras and ordered sets: structure, enumerability, decidability
代数和有序集:结构、可枚举性、可判定性
- 批准号:
9971352 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
International Conference on Modern Algebra and Its Applications; May 14-18, 1996; Nashville, Tennnessee
现代代数及其应用国际会议;
- 批准号:
9531795 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Model Theory and Universal Algebra
数学科学:模型论和通用代数
- 批准号:
9596043 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Model Theory and Universal Algebra
数学科学:模型论和通用代数
- 批准号:
9403187 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Universal Algebra, Lattice Theory and Related Areas
数学科学:泛代数、格论及相关领域会议
- 批准号:
9201552 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Model Theory and Universal Algebra
数学科学:模型论和通用代数
- 批准号:
8904014 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Model Theory and Universal Algebra
数学科学:模型论和通用代数
- 批准号:
8600300 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Leveraging natural and engineered genetic barcodes from single cell RNA sequencing to investigate cellular evolution, clonal expansion, and associations between cellular genotypes and phenotypes
利用单细胞 RNA 测序中的天然和工程遗传条形码来研究细胞进化、克隆扩增以及细胞基因型和表型之间的关联
- 批准号:
10679186 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Parameterizing the relationship between motor cortical reactivation during sleep and motor skill acquisition in the freely behaving marmoset
参数化睡眠期间运动皮层重新激活与自由行为狨猴运动技能习得之间的关系
- 批准号:
10658109 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The perivascular space: A structural link between inadequate sleep, glymphatic dysfunction, and neurocognitive outcomes in adolescents
血管周围空间:青少年睡眠不足、类淋巴功能障碍和神经认知结果之间的结构联系
- 批准号:
10578466 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Theory and Algorithms for Relation between Stochastic Control and Reinforcement Learning
随机控制与强化学习关系的理论和算法
- 批准号:
2741077 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
- 批准号:
10357463 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The association between the urine microbiome, the host immune response and urinary symptoms in children with spina bifida
脊柱裂儿童尿液微生物组、宿主免疫反应和泌尿系统症状之间的关系
- 批准号:
10448844 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Compatibility Between Brain-Computer Interface and High Efficiency Augmentative and Alternative Communication Systems: Commercial Readiness
脑机接口与高效增强和替代通信系统之间的兼容性:商业准备情况
- 批准号:
10610846 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Compatibility Between Brain-Computer Interface and High Efficiency Augmentative and Alternative Communication Systems: Commercial Readiness
脑机接口与高效增强和替代通信系统之间的兼容性:商业准备情况
- 批准号:
10384113 - 财政年份:2022
- 资助金额:
-- - 项目类别:
The interplay between kinematic and force representations in motor and somatosensory cortices during reaching, grasping, and object transport
伸手、抓握和物体运输过程中运动和体感皮层运动学和力表征之间的相互作用
- 批准号:
10546486 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Bridging the gap between theory and practice for distributed graph algorithms
弥合分布式图算法理论与实践之间的差距
- 批准号:
21KK0204 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))